St. JOSEPH'S COLLEGE OF ENGINEERING (An Autonomous Institution) ## St. Joseph's Group of Institutions OMR, Chennai - 119 #### **DEPARTMENT OF BIOTECHNOLOGY** REGULATIONS 2021 (Approved for the students admitted in the Batch 2022 – 2026) #### **B.TECH BIOTECHNOLOGY** #### **CHOICE BASED CREDIT SYSTEM** #### VISION AND MISSION OF THE DEPARTMENT #### **Vision of the Department** • To provide a world class department to facilitate learning, training, and research in Biotechnology by providing infrastructural facilities and competent faculty leading to technological innovations to serve the global society. #### **Mission of the Department** - The Mission of the Department is to provide quality education to students and to produce competent Biotechnologists to meet the challenges faced by industry and mankind. - To inculcate high moral, ethical & professional standards among our students. - To develop the overall personality of the students. #### PROGRAM EDUCATIONAL OBJECTIVES (PEOs) The primary objective of the Bachelor of Biotechnology program is to prepare professionals with the skills required to work in the Biotechnology industry with particular emphasis on the engineering aspects of manufacturing and design. #### Biotech Graduates are trained to - I. To provide the necessary background in basic sciences like physics, chemistry, Computers, and advanced mathematics and to provide opportunities for students to gain knowledge in multidisciplinary subjects and labs. - II. To provide training to design and solve problems relevant to the general practice of Biotechnological process development, product optimization, commercialization, and social application taking into account their impacts on the environment. - III. To impart job-related skills in the field of biotechnology with an awareness of professional codes and bioethical practices. - IV. To promote a life-long learning process for a successful professional career in industries and research organizations leading to successful employability. The Overall objective of the Program is to promote education and research in biotechnology and provide academic and professional excellence for immediate productivity in industrial, governmental, or clinical settings for an ultimate benefit of society and environment. #### PROGRAM OUTCOMES(POs) As a result of this program, the student will be able to: - 1. **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. - 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. - 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations. - 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to proceed to valid conclusions. - 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. - 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice. - 7. **Environment and sustainability:** Understand the impact of professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of and need for sustainable development. - 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - 9. **Individual and team work:** Function effectively as an individual and as a member or leader in diverse teams, and in multidisciplinary settings. - 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. - 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects in multidisciplinary environments. - 12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change. ### PROGRAMME SPECIFIC OUTCOMES (PSOs) - 1. Our Biotech graduates shall possess strong knowledge in the field of biotechnology and applied sciences. - 2. Our Biotech graduates shall be able to design and conduct experiments in biotechnology as well as analyze and interpret data. - 3. Our Biotech graduates shall be able to use current techniques, skills and modern tools necessary for modelling and design of bioprocesses. # Mapping of Programme Educational Objectives (PEOs)with Programme Outcomes (POs) and Programme Specific Outcomes (PSOs) | PEOs | | | | | | P | Os | | | | | | | PSOs | | |-------|---|---|---|---|---|---|----|---|---|----|----|----|---|------|---| | 1 203 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | - 1 | | ✓ | ✓ | | | ✓ | ✓ | ✓ | ✓ | | ✓ | ✓ | ✓ | ✓ | ✓ | | II | ✓ | | ✓ | | ✓ | ✓ | | ✓ | ✓ | ✓ | ✓ | | ✓ | ✓ | | | III | | ✓ | ✓ | ✓ | ✓ | | ✓ | | | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | IV | ✓ | | | ✓ | ✓ | ✓ | ✓ | | ✓ | ✓ | | ✓ | | ✓ | ✓ | ### Mapping of Course Outcomes (COs) with Programme Outcomes (POs) | YEAR | SEM | SUBJECT NAME | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO
7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | |--------|-------|--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | | | Communicative
English | - | ✓ | ✓ | √ | √ | - | √ | - | ✓ | ✓ | - | - | | | | Engineering
Mathematics – I | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | ✓ | ✓ | √ | ✓ | | | | Engineering
Physics | ✓ | ✓ | ✓ | √ | ✓ | ✓ | ✓ | ✓ | - | ✓ | √ | ✓ | | | - | Engineering
Chemistry | ✓ | ✓ | ✓ | √ | √ | ✓ | √ | ✓ | ✓ | ✓ | √ | ✓ | | YEAR 1 | SEM 1 | Problem Solving
and Python
Programming | √ | √ | √ | √ | ✓ | - | - | - | 1 | ✓ | ✓ | ✓ | | YE/ | | Engineering
Graphics | ✓ | √ | √ | √ | ✓ | ✓ | - | - | ✓ | ✓ | √ | ✓ | | | | Python
Programming
Laboratory | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | - | - | ✓ | ✓ | ✓ | | | | Physics and
Chemistry
Laboratory | √ | ✓ | ✓ | ✓ | ✓ | ✓ | √ | ✓ | ✓ | ✓ | ✓ | ✓ | | | | | | | | | | | | | | | | | | | N 2 | Professional
English | - | | | √ | | - | ✓ | - | √ | ✓ | - | - | | | SEM | Engineering
Mathematics – II | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | - | - | - | ✓ | | YEAR | SEM | SUBJECT NAME | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO
7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | |--------|-------|--|----------|-------------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------| | | | Physics of
Materials | ✓ | √ | √ | √ | √ | √ | √ | - | - | - | - | ✓ | | | | Environmental
Science and
Engineering | ✓ | √ | √ | √ | √ | √ | √ | ✓ | √ | ✓ | √ | √ | | | | Basic Civil and
Mechanical
Engineering | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | ✓ | ✓ | - | ✓ | | | | Cell Biology | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | - | - | - | - | ✓ | | | | Engineering
Practices Lab | ✓ | ✓ | ✓ | ✓ | - | ✓ | ✓ | - | - | - | ✓ | ✓ | | | | Cell Biology Lab | ✓ | √ | ✓ | ✓ | √ | ✓ | ✓ | - | - | - | - | - | Transforms and Partial Differential Equations | ✓ | ✓ | ✓ | ✓ | - | - | - | - | ✓ | - | ✓ | - | | | | Process
Calculations | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | ✓ | - | ✓ | ✓ | | | | Basic Industrial
Biotechnology | ✓ | √ | ✓ | ✓ | √ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | | Microbiology | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | ✓ | ✓ | ✓ | - | ✓ | | | SEM 3 | Biochemistry - I | ✓ | > | ✓ | ✓ | > | ✓ | ı | - | ı | - | ı | ✓ | | | | Molecular Biology | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | - | - | - | - | ✓ | | YEAR 2 | | Microbiology
Laboratory | ✓ | - | - | √ | - | ✓ | ✓ | ✓ | ✓ | ✓ | - | ✓ | | | | Biochemistry
Laboratory | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | - | - | - | ✓ | | | | Professional Skills
Lab | ✓ | ✓ | ✓ | - | - | ✓ | - | - | ✓ | ✓ | ✓ | ✓ | | | | Applied Probability | | | | | | | | | | | | | | | | and Statistics | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | - | ✓ | ✓ | | | 4 | Biochemistry - II | ✓ | ✓ | - | ✓ | - | ✓ | - | - | - | - | ✓ | ✓ | | | SEM 4 | Enzyme
Engineering | ✓ | ✓ | ✓ | ✓ | - | ✓ | ✓ | - | - | - | - | ✓ | | |
| Fluid Mechanics
and Heat Transfer
Operations | ✓ | ✓ | ✓ | ✓ | - | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | YEAR | SEM | SUBJECT NAME | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO
7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | |--------|-------|--|--------------|--------------|----------|--------------|----------|--------------|--------------|----------|----------|----------|----------|----------| | | | Bioprocess
Principles | ✓ | ✓ | ✓ | ✓ | - | ✓ | ✓ | - | - | - | - | ✓ | | | | Applied Thermodynamics for Biotechnologists | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | √ | ✓ | | | | Chemical
Engineering Lab | > | ✓ | √ | √ | ✓ | ~ | √ | ✓ | √ | ✓ | ı | ✓ | | | | Molecular Biology
Laboratory | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | - | - | | | | Mass Transfer
Operations | ✓ | - | √ | √ | - | √ | - | - | - | - | ✓ | _ | | | | Bioprocess
Engineering | √ | ✓ | √ | √ | ✓ | √ | √ | ✓ | ✓ | - | -
- | | | | rc | Analytical methods & Instrumentation | √ | ✓ | - | ✓ | - | ✓ | - | - | - | - | ✓ | ~ | | | SEM | Protein
Engineering | √ | √ | √ | √ | ✓ | √ | ✓ | ✓ | ✓ | - | - | ~ | | | | Bioprocess
Laboratory I | √ | √ | √ | √ | ✓ | √ | √ | ✓ | ✓ | ✓ | - | - | | YEAR 3 | | Analytical methods
& Instrumentation
Lab | - | - | - | ✓ | - | - | ✓ | - | ✓ | - | √ | ~ | | 7 | | Computational
Biology | √ | √ | √ | √ | √ | - | - | - | - | - | - | | | | | Applied Chemical
Reaction
Engineering | < | ✓ | ✓ | ✓ | - | ~ | | 1 | 1 | - | √ | | | | SEM 6 | Genetic
Engineering | ✓ | √ | √ | √ | ✓ | ✓ | √ | ✓ | ✓ | - | 1 | ~ | | | | Bioprocess
Laboratory II | ✓ | √ | √ | √ | ✓ | √ | ✓ | ✓ | ✓ | ✓ | 1 | - | | | | Genetic
Engineering
Laboratory | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | - | - | | _ | 1 | | | | | | T | | | | | T | | ı | | 4 | 17 | Total Quality Management for Biotechnologists | ✓ | √ | √ | √ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ٧ | | YEAR 4 | SEM 7 | Downstream
Processing | ✓ | ✓ | √ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ~ | | | | Immunology | \checkmark | \checkmark | ✓ | \checkmark | ✓ | \checkmark | \checkmark | - | - | - | - | ~ | | YEAR | SEM | SUBJECT NAME | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | |------|----------|----------------------------------|----------|----------|-------------|-------------|-------------|----------|------|---------|----------|-------------|-------------|----------| | | | Downstream Processing Laboratory | ✓ | √ | > | > | > | ~ | ✓ | - | √ | > | > | ✓ | | | | Immunology
Laboratory | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | ✓ | - | - | - | ✓ | | | SEM
8 | Project Work | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | You Choose, We Do It # St. JOSEPH'S COLLEGE OF ENGINEERING (An Autonomous Institution) St. Joseph's Group of Institutions OMR, Chennai - 119 # **DEPARTMENT OF BIOTECHNOLOGY B. TECH BIOTECHNOLOGY** ### **REGULATIONS 2021** (Approved for the students admitted in the Batch 2022 – 2026) ### I TO VIII SEMESTERS CURRICULUM ### SEMESTER I | S.No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |------|----------------|--|--------------|--------------------|----|---|----|----| | THEO | RY | | | | | | | | | 1 | HS1101 | Communicative English | HSMC | 3 | 3 | 0 | 0 | 3 | | 2 | MA1102 | Engineering Mathematics – I | BSC | 4 | 3 | 1 | 0 | 4 | | 3 | PH1103 | Engineering
Physics | BSC | 3 | 3 | 0 | 0 | 3 | | 4 | CY1104 | Engineering Chemistry | BSC | 3 | 3 | 0 | 0 | 3 | | 5 | GE1105 | Problem solving and python programming | ESC | 3 | 3 | 0 | 0 | 3 | | 6 | GE1106 | Engineering Graphics | ESC | 6 | 2 | 0 | 4 | 4 | | PRAC | TICALS | | | | | | | | | 8 | GE1107 | Python Programming Lab | ESC | 4 | 0 | 0 | 4 | 2 | | 9 | BS1108 | Physics and Chemistry Lab | BSC | 4 | 0 | 0 | 4 | 2 | | | | | TOTAL | 31 | 19 | 0 | 12 | 24 | ### **SEMESTER II** | S.No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |------|----------------|---|--------------|--------------------|----|---|---|----| | THEC | RY | | | | | | | | | 1 | HS1201 | Professional English | HSMC | 3 | 3 | 0 | 0 | 3 | | 2 | MA1202 | Engineering Mathematics – II | BSC | 4 | 3 | 1 | 0 | 4 | | 3 | PH1255 | Physics of
Materials | BSC | 3 | 3 | 0 | 0 | 3 | | 4 | GE1204 | Environmental science and Engineering | HSMC | 3 | 3 | 0 | 0 | 3 | | 5 | GE1205 | Basic Civil and Mechanical
Engineering | ESC | 3 | 3 | 0 | 0 | 3 | | 6 | BT1206 | Cell Biology | PCC | 3 | 3 | 0 | 0 | 3 | | 7 | GE1209 | தமிழர் மரபு
Heritage of Tamils | HSMC | 1 | 1 | 0 | 0 | 1 | | PRAC | CTICALS | | | | | | | | | 8 | GE1207 | Engineering Practices lab | ESC | 4 | 0 | 0 | 4 | 2 | | 9 | BT1208 | Cell Biology Lab | PCC | 4 | 0 | 0 | 4 | 2 | | | | | TOTAL | 28 | 20 | 0 | 8 | 24 | # **SEMESTER III** | S.No | COURSE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |------|--------|--|--------------|--------------------|----|---|----|----| | THEO | RY | | | | | | | | | 1 | MA1301 | Transforms and Partial Differential Equations | BSC | 4 | 3 | 1 | 0 | 4 | | 2 | BT1301 | Process Calculations | PCC | 3 | 3 | 0 | 0 | 3 | | 3 | BT1302 | Basic Industrial
Biotechnology | PCC | 3 | 3 | 0 | 0 | 3 | | 4 | BT1303 | Microbiology | PCC | 3 | 3 | 0 | 0 | 3 | | 5 | BT1304 | Biochemistry-I | PCC | 3 | 3 | 0 | 0 | 3 | | 6 | BT1305 | Molecular Biology | PCC | 3 | 3 | 0 | 0 | 3 | | 7 | GE1210 | தமிழரும்
தொழில்நுட்பமும்
Tamils and Technology | HSMC | 1 | 1 | 0 | 0 | 1 | | PRAC | TICALS | | | | | | | | | 7 | BT1307 | Microbiology Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | 8 | BT1308 | Biochemistry Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | 9 | HS1310 | Professional Skills Lab | EEC | 2 | 0 | 0 | 2 | 1 | | | | | TOTAL | 29 | 19 | 2 | 10 | 25 | ## **SEMESTER IV** | S.No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |------|----------------|---|--------------|--------------------|----|---|---|----| | THEO | RY | | | | | | | | | 1 | MA1452 | Applied Probability and Statistics | BSC | 4 | 3 | 1 | 0 | 4 | | 2 | BT1401 | Biochemistry-II | PCC | 3 | 3 | 0 | 0 | 3 | | 3 | BT1402 | Enzyme Engineering | PCC | 3 | 3 | 0 | 0 | 3 | | 4 | BT1403 | Fluid Mechanics and Heat
Transfer Operations | ESC | 3 | 3 | 0 | 0 | 3 | | 5 | BT1404 | Bioprocess Principles | PCC | 3 | 3 | 0 | 0 | 3 | | 6 | BT1405 | Applied Thermodynamics for Biotechnologists | PCC | 3 | 3 | 0 | 0 | 3 | | 7 | | Audit Course* | AC | 2 | 2 | 0 | 0 | 0 | | PRAC | TICALS | | | | | | | | | 8 | BT1407 | Chemical Engineering Lab | ESC | 4 | 0 | 0 | 4 | 2 | | 9 | BT1408 | Molecular Biology Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | | | | TOTAL | 29 | 21 | 0 | 8 | 23 | ^{*} Registration for any one of the audit courses is optional for the students ### **SEMESTER V** | S.No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |------|----------------|--|--------------|--------------------|----|---|---|----| | THEO | RY | | | | | | | | | 1 | BT1501 | Mass Transfer Operations | PCC | 3 | 3 | 0 | 0 | 3 | | 2 | BT1502 | Bioprocess Engineering | ESC | 3 | 3 | 0 | 0 | 3 | | 3 | BT1503 | Analytical methods and Instrumentation | PCC | 3 | 3 | 0 | 0 | 3 | | 4 | BT1504 | Protein Engineering | PCC | 3 | 3 | 0 | 0 | 3 | | 5 | | Professional Elective- I | PEC | 3 | 3 | 0 | 0 | 3 | | 6 | | Open Elective-I | OEC | 3 | 3 | 0 | 0 | 3 | | PRAC | TICALS | | | | | | | | | 7 | BT1507 | Bioprocess Laboratory-I | PCC | 4 | 0 | 0 | 4 | 2 | | 8 | BT1508 | Analytical methods and Instrumentation Lab | PCC | 4 | 0 | 0 | 4 | 2 | | 9 | BT1510 | In-plant Training** | EEC | 0 | 0 | 0 | 0 | 1 | | | | | TOTAL | 26 | 18 | 0 | 8 | 23 | ^{**}Students should undergo two-week In-plant Training during IV semester vacation which will be evaluated during the V semester ### **SEMESTER VI** | S.No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |--------------|----------------|---|--------------------------|--------------------|----|---|----|----| | THEO | RY | | | | | | | | | 1 | BT1601 | Computational Biology | PCC
Theory
cum Lab | 5 | 3 | 0 | 2 | 4 | | 2 | BT1602 | Applied Chemical Reaction Engineering | ESC | 3 | 3 | 0 | 0 | 3 | | 3 | BT1603 | Genetic Engineering | PCC | 3 | 3 | 0 | 0 | 3 | | 4 | | Professional Elective-II | PEC | 3 | 3 | 0 | 0 | 3 | | 5 | | Professional Elective-III | PEC | 3 | 3 | 0 | 0 | 3 | | 6 | | Professional Elective-IV | PEC | 3 | 3 | 0 | 0 | 3 | | PRAC | TICALS | | | | | | | | | 7 | BT1607 | Bioprocess Laboratory-II | PCC | 4 | 0 | 0 | 4 | 2 | | 8 | BT1608 | Genetic Engineering Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | | | | TOTAL | 28 | 18 | 0 | 10 | 23 | | (BVA | | dded course***
ements in Drug Designing –
1 week) | EEC | 3 | 1 | 0 | 2 | 2 | ^{***} The credits earned through Value added course shall be over and above the total credits prescribed in the curriculum for the award of the degree ## **SEMESTER VII** | S.No | COURSE
CODE | COURSE TITLE |
CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |-------|----------------|---|--------------|--------------------|----|---|---|----| | THEOF | RY | | | | | | | | | 1 | BT1701 | Total Quality Management for Biotechnologists | BSC | 3 | 3 | 0 | 0 | 3 | | 2 | BT1702 | Downstream Processing | PCC | 3 | 3 | 0 | 0 | 3 | | 3 | BT1703 | Immunology | PCC | 3 | 3 | 0 | 0 | 3 | | 4 | | Professional Elective V | PEC | 3 | 3 | 0 | 0 | 3 | | 5 | | Professional Elective VI | PEC | 3 | 3 | 0 | 0 | 3 | | 6 | | Open Elective II | OEC | 3 | 3 | 0 | 0 | 3 | | PRAC1 | ΓICALS | | | | | | | | | 7 | BT1707 | Downstream Processing
Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | 8 | BT1708 | Immunology Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | | | TOTAL | | 26 | 18 | 0 | 8 | 22 | ## **SEMESTER VIII** | S.No | COURSE
CODE | COURSE TITLE | CATE
GORY | | | Т | Р | С | | | |-------|----------------|--------------|--------------|----|---|---|----|----|--|--| | PRACT | PRACTICALS | | | | | | | | | | | 1 | BT1807 | Project work | EEC | 20 | 0 | 0 | 20 | 10 | | | | | | TOTAL | | 20 | 0 | 0 | 20 | 10 | | | # **TOTAL NO. OF CREDITS:174** # AUDIT COURSE* (AC) | S.No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |------|----------------|---|--------------|--------------------|---|---|---|---| | 1. | AD1001 | Constitution of India | AC | 2 | 2 | 0 | 0 | 0 | | 2. | AD1002 | Value Education | AC | 2 | 2 | 0 | 0 | 0 | | 3. | AD1003 | Pedagogy Studies | AC | 2 | 2 | 0 | 0 | 0 | | 4. | AD1004 | Stress Management by Yoga | AC | 2 | 2 | 0 | 0 | 0 | | 5. | AD1005 | Personality Development Through Life Enlightenment Skills | AC | 2 | 2 | 0 | 0 | 0 | | 6. | AD1006 | Unnat Bharat Abhiyan | AC | 2 | 2 | 0 | 0 | 0 | | 7. | AD1007 | Essence of Indian Knowledge Tradition | AC | 2 | 2 | 0 | 0 | 0 | | 8. | AD1008 | Sanga Tamil Literature Appreciation | AC | 2 | 2 | 0 | 0 | 0 | ^{*} Registration for any of these courses is optional for students ## PROFESSIONAL ELECTIVES #### PROFESSIONAL ELECTIVE-I | S.N
o | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |----------|----------------|----------------------------------|--------------|--------------------|---|---|---|---| | 1 | BT1001 | Biophysics | PEC | 3 | 3 | 0 | 0 | 3 | | 2 | BT1002 | Principles of Food
Processing | PEC | 3 | 3 | 0 | 0 | 3 | | 3 | CE1025 | Disaster Management | PEC | 3 | 3 | 0 | 0 | 3 | | 4 | BT1004 | Marine Biotechnology | PEC | 3 | 3 | 0 | 0 | 3 | ### PROFESSIONAL ELECTIVE-II | S.No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | ٦ | Т | Р | С | |------|----------------|------------------------------|--------------|--------------------|---|---|---|---| | 1 | BT1005 | Animal Biotechnology | PEC | 3 | 3 | 0 | 0 | 3 | | 2 | BT1006 | Systems Biology | PEC | 3 | 3 | 0 | 0 | 3 | | 3 | BT1007 | Biological Spectroscopy | PEC | 3 | 3 | 0 | 0 | 3 | | 4 | GE1001 | Intellectual Property Rights | PEC | 3 | 3 | 0 | 0 | 3 | #### PROFESSIONAL ELECTIVE-III | S.N
o | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |----------|----------------|------------------------------------|--------------|--------------------|---|---|---|---| | 1 | BT1009 | Cancer Biology | PEC | 3 | 3 | 0 | 0 | 3 | | 2 | BT1010 | Biopharmaceutical Technology | PEC | 3 | 3 | 0 | 0 | 3 | | 3 | BT1011 | Molecular pathogenesis of diseases | PEC | 3 | 3 | 0 | 0 | 3 | | 4 | BT1012 | Bio-Entrepreneurship | PEC | 3 | 3 | 0 | 0 | 3 | #### PROFESSIONAL ELECTIVE-IV | S.No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT PERIODS | ٦ | Т | Р | С | |------|----------------|-----------------------------|--------------|-----------------|---|---|---|---| | 1 | BT1013 | Bioethics | PEC | 3 | 3 | 0 | 0 | 3 | | 2 | GE1004 | Fundamentals of Nanoscience | PEC | 3 | 3 | 0 | 0 | 3 | | 3 | BT1015 | Genomics and Proteomics | PEC | 3 | 3 | 0 | 0 | 3 | | 4 | BT1016 | Lifestyle diseases | PEC | 3 | 3 | 0 | 0 | 3 | ### PROFESSIONAL ELECTIVE-V | S.No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT PERIODS | ٦ | Т | Р | С | |------|----------------|-----------------------|--------------|-----------------|---|---|---|---| | 1 | BT1017 | Plant Biotechnology | PEC | 3 | 3 | 0 | 0 | 3 | | 2 | BT1018 | Metabolic Engineering | PEC | 3 | 3 | 0 | 0 | 3 | | 3 | BT1019 | Genetics | PEC | 3 | 3 | 0 | 0 | 3 | | 4 | BT1020 | Clinical Trials | PEC | 3 | 3 | 0 | 0 | 3 | ### PROFESSIONAL ELECTIVE-VI | S.No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | ٦ | Т | P | С | |------|----------------|------------------------------------|--------------|--------------------|---|---|---|---| | 1 | BT1021 | Tissue Engineering | PEC | 3 | 3 | 0 | 0 | 3 | | 2 | BT1022 | Biosafety and Hazard
Management | PEC | 3 | 3 | 0 | 0 | 3 | | 3 | BT1023 | Stem Cell Technology | PEC | 3 | 3 | 0 | 0 | 3 | | 4 | BT1024 | Immunotechnology | PEC | 3 | 3 | 0 | 0 | 3 | # OPEN ELECTIVE - I | S.
No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | T | Р | С | |----------|----------------|--------------------------------------|--------------|--------------------|---|---|---|---| | 1. | OCE101 | Air pollution and Control | OEC | 3 | 3 | 0 | 0 | 3 | | 2. | OME101 | Automotive Systems | OEC | 3 | 3 | 0 | 0 | 3 | | 3. | OEI103 | Basics of Biomedical Instrumentation | OEC | 3 | 3 | 0 | 0 | 3 | | 4. | OCS103 | Introduction to Cloud computing | OEC | 3 | 3 | 0 | 0 | 3 | | 5. | OCH103 | Environment and Agriculture | OEC | 3 | 3 | 0 | 0 | 3 | | 6. | OEI101 | Sensors and Transducers | OEC | 3 | 3 | 0 | 0 | 3 | # OPEN ELECTIVE-II | S.
No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |----------|----------------|---------------------------------------|--------------|--------------------|---|---|---|---| | 1. | OME102 | Design of Experiments | OEC | 3 | 3 | 0 | 0 | 3 | | 2. | OCE104 | Green Building Design | OEC | 3 | 3 | 0 | 0 | 3 | | 3. | OCH101 | Hospital Management | OEC | 3 | 3 | 0 | 0 | 3 | | 4. | OEI102 | Robotics | OEC | 3 | 3 | 0 | 0 | 3 | | 5. | OCS101 | Introduction to C programming | OEC | 3 | 3 | 0 | 0 | 3 | | 6. | OMB102 | Logistics and Supply Chain Management | OEC | 3 | 3 | 0 | 0 | 3 | # SUBJECT AREA-WISE DETAILS # HUMANITIES, SOCIAL SCIENCES AND MANAGEMENT COURSES (HSMC) | S.
No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT PERIODS | L | Т | Р | С | |----------|----------------|---|--------------|-----------------|---|---|---|---| | 1. | HS1101 | Communicative English | HSMC | 3 | 3 | 0 | 0 | 3 | | 2. | HS1201 | Professional English | HSMC | 4 | 3 | 0 | 0 | 3 | | 3. | GE1204 | Environmental Science and Engineering | HSMC | 3 | 3 | 0 | 0 | 3 | | 4. | GE1209 | தமிழர் மரபு
Heritage of Tamils | HSMC | 1 | 1 | 0 | 0 | 1 | | 5. | GE1210 | தமிழரும் தொழில்நுட்பமும்
Tamils and Technology | HSMC | 1 | 1 | 0 | 0 | 1 | # **ENGINEERING SCIENCE COURSES (ESC)** | S.
No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |----------|----------------|--|--------------|--------------------|---|---|---|---| | 1. | GE1105 | Problem Solving and Python Programming | ESC | 3 | 3 | 0 | 0 | 3 | | 2. | GE1106 | Engineering Graphics | ESC | 6 | 2 | 0 | 4 | 4 | | 3. | GE1107 | Problem Solving and Python
Programming Laboratory | ESC | 4 | 0 | 0 | 4 | 2 | | 4. | GE1205 | Basic Civil and Mechanical
Engineering | ESC | 4 | 3 | 0 | 0 | 3 | | 5. | GE1207 | Engineering Practices Laboratory | ESC | 4 | 0 | 0 | 4 | 2 | | 6. | BT1403 | Fluid Mechanics and Heat Transfer Operations | ESC | 4 | 3 | 0 | 0 | 3 | | 7. | BT1407 | Chemical Engineering Laboratory | ESC | 4 | 0 | 0 | 4 | 2 | | 8. | BT1502 | Bioprocess Engineering | ESC | 3 | 3 | 0 | 0 | 3 | | 9. | BT1602 | Applied Chemical Reaction Engineering | ESC | 3 | 3 | 0 | 0 | 3 | # **BASIC SCIENCE COURSES (BSC)** | S.
No | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT PERIODS | L | Т | Р | С | |----------|----------------|---|--------------|-----------------|---|---|---|---| | 1. | MA1102 | Engineering Mathematics-I | BSC | 4 | 3 | 1 | 0 | 4 | | 2. | PH1103 | Engineering Physics | BSC | 3 | 3 | 0 | 0 | 3 | | 3. | CY1104 | Engineering Chemistry | BSC | 3 | 3 | 0 | 0 | 3 | | 4. | BS1108 | Physics and Chemistry Laboratory | BSC | 4 | 0 | 0 | 4 | 2 | | 5. | MA1202 | Engineering Mathematics-II | BSC | 4 | 3 | 1 | 0 | 4 | | 6. | PH1252 | Physics of Materials | BSC | 3 | 3 | 0 | 0 | 3 | | 7. | MA1301 | Transforms and Partial Differential Equations | BSC | 4 | 3 | 1 | 0 | 4 | | 8. | MA1452 | Applied Probability and Statistics | BSC | 4 | 3 | 1 | 0 | 4 | | 9. | BT1701 | Total Quality Management for Biotechnologists | BSC | 3 | 3 | 0 | 0 | 3 | # PROFESSIONAL CORE COURSES (PCC) | S. No. | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT
PERIODS | L | Т | Р | С | |--------|----------------|---|--------------|--------------------|---|---|---|---| | 1. | BT1304 | Biochemistry-I | PCC | 3 | 3 | 0 | 0 | 3 | | 2. | BT1308 | Biochemistry Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | 3. | BT1301 | Process Calculations | PCC | 3 | 3 | 0 | 0 | 3 | | 4. | BT1405 | Applied Thermodynamics for Biotechnologists | PCC | 3 | 3 | 0 | 0 | 3 | | 5. | BT1302 | Basic Industrial Biotechnology | PCC | 3 | 3 | 0 | 0 | 3 | | 6. | BT1401 | Biochemistry – II | PCC | 3 | 3 | 0 | 0 | 3 | | 7. | BT1206 | Cell Biology | PCC | 3 | 3 | 0 | 0 | 3 | | 8. | BT1307 | Microbiology Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | 9. | BT1208 | Cell Biology Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | 10. | BT1303 | Microbiology | PCC | 3 | 3 | 0 | 0 | 3 | | 11. | BT1305 | Molecular Biology | PCC | 3 | 3 | 0 | 0 | 3 | | 12. | BT1402 | Enzyme
Engineering | PCC | 3 | 3 | 0 | 0 | 3 | | 13. | BT1404 | Bioprocess Principles | PCC | 3 | 3 | 0 | 0 | 3 | | 14. | BT1408 | Molecular Biology Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | 15. | BT1501 | Mass Transfer Operations | PCC | 3 | 3 | 0 | 0 | 3 | | 16. | BT1503 | Analytical Methods and Instrumentation | PCC | 3 | 3 | 0 | 0 | 3 | | 17. | BT1504 | Protein Engineering | PCC | 3 | 3 | 0 | 0 | 3 | | 18. | BT1507 | Bioprocess Laboratory-I | PCC | 4 | 0 | 0 | 4 | 2 | | 19. | BT1508 | Analytical Methods and Instrumentation Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | 20. | BT1601 | Computational Biology | PCC | 5 | 3 | 0 | 2 | 4 | | 21. | BT1603 | Genetic Engineering | PCC | 4 | 3 | 0 | 0 | 3 | | 22. | BT1607 | Bioprocess Laboratory II | PCC | 4 | 0 | 0 | 4 | 2 | | 23. | BT1608 | Genetic Engineering Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | 24. | BT1702 | Downstream Processing | PCC | 3 | 3 | 0 | 0 | 3 | | 25. | BT1703 | Immunology | PCC | 3 | 3 | 0 | 0 | 3 | | 26. | BT1707 | Downstream Processing Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | | 27. | BT1708 | Immunology Laboratory | PCC | 4 | 0 | 0 | 4 | 2 | # **EMPLOYABILITY ENHANCEMENT COURSES (EEC)** | S. No. | COURSE
CODE | COURSE TITLE | CATE
GORY | CONTACT PERIODS | L | Т | Р | С | |--------|----------------|--------------------------------|--------------|-----------------|---|---|----|----| | 1. | HS1310 | Professional skills Lab | EEC | 2 | 0 | 0 | 2 | 1 | | 2. | BT1510 | In-plant Training | EEC | 0 | 0 | 0 | 0 | 1 | | 3. | BVA001 | Advancements in Drug Designing | EEC | 3 | 1 | 0 | 2 | 2 | | 4. | BT1807 | Project Work | EEC | 20 | 0 | 0 | 20 | 10 | # **SUMMARY OF CREDITS** | S. No. | SUBJECT | | | CRE | DITS F | PER SEM | ESTER | R | | TOTAL | |--------|---------|----|----|-----|--------|---------|-------|-----|------|---------| | 3. NO. | AREA | ı | II | III | IV | ٧ | VI | VII | VIII | CREDITS | | 1 | HSMC | 3 | 7 | 1 | - | - | - | - | - | 11 | | 2 | BSC | 12 | 7 | 4 | 4 | - | - | 3 | - | 30 | | 3 | ESC | 9 | 5 | - | 5 | 3 | 3 | - | - | 25 | | 4 | PCC | - | 5 | 19 | 14 | 13 | 11 | 10 | - | 72 | | 5 | PEC | - | - | - | - | 3 | 9 | 6 | - | 18 | | 6 | OEC | - | - | - | - | 3 | - | 3 | - | 06 | | 7 | AC | - | - | - | - | - | - | - | - | 00 | | 8 | EEC | - | - | 1 | - | 1 | - | - | 10 | 12 | | | Total | 24 | 24 | 25 | 23 | 23 | 23 | 22 | 10 | 174 | #### **I SEMESTER** # HS1101 COMMUNICATIVE ENGLISH L T P C 3 0 0 3 #### **OBJECTIVES:** - To develop the basic reading and writing skills of first year engineering and technology students. - To help learners develop their listening skills, which will enable them listen to lectures and comprehend them by asking questions; seeking clarifications. - To help learners develop their speaking skills and speak fluently in real contexts. - To help learners develop vocabulary of a general kind by developing their reading skills. #### UNIT I: SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS 9 Reading – critical reading – finding key information in a given text – shifting facts from opinions - Writing - autobiographical writing - developing hints. Listening- short texts- short formal and informal conversations. Speaking- basics in speaking - introducing oneself - exchanging personal information- speaking on given topics & situations Language development— voices- Wh-Questions- asking and answering-yes or no questions— parts of speech. Vocabulary development- prefixes- suffixes- articles - Polite Expressions. #### UNIT II GENERAL READING AND FREE WRITING Reading: Short narratives and descriptions from newspapers (including dialogues and conversations; Reading Comprehension Texts with varied question types - Writing – paragraph writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures –. Listening - long texts - TED talks - extensive speech on current affairs and discussions Speaking – describing a simple process – asking and answering questions - Language development – prepositions, clauses. Vocabulary development- guessing meanings of words in context – use of sequence words. #### UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT Reading- short texts and longer passages (close reading) & making a critical analysis of the given text Writing – types of paragraph and writing essays – rearrangement of jumbled sentences. Listening: Listening to ted talks and long speeches for comprehension. Speaking- role plays - asking about routine actions and expressing opinions. Language development- degrees of comparison-pronouns- Direct vs. Indirect Questions. Vocabulary development – idioms and phrases- cause & effect expressions, adverbs. #### UNIT IV READING AND LANGUAGE DEVELOPMENT Reading- comprehension-reading longer texts- reading different types of texts- magazines. Writing-letter writing, informal or personal letters-e-mails-conventions of personal email- Listening: Listening comprehension (IELTS, TOEFL and others). Speaking -Speaking about friends/places/hobbies - Language development- Tenses- simple present-simple past- present continuous and past continuous- conditionals – if, unless, in case, when and others Vocabulary development- synonyms-antonyms- Single word substitutes- Collocations. ## UNIT V EXTENDED WRITING Reading: Reading for comparisons and contrast and other deeper levels of meaning –Writing-brainstorming -writing short essays – developing an outline- identifying main and subordinate ideas- dialogue writing- Listening - popular speeches and presentations - Speaking - impromptu 9 CO₃ CO1 9 9 CO4 9 CO₅ speeches & debates Language development-modal verbs- present/ past perfect tense - Vocabulary development-Phrasal verbs- fixed and semi-fixed expressions. **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. Board of Editors. Using English A Course book for Undergraduate Engineers and Technologists. Orient Black Swan Limited, Hyderabad: 2020 - 2. Sanjay Kumar & Pushp Lata Communication Skills Second Edition, Oxford University Press: 2015. - 3. Richards, C. Jack. Interchange Students' Book-2 New Delhi: CUP, 2015. #### **REFERENCES:** - 1. Bailey, Stephen. Academic Writing: A practical guide for students. New York: Rutledge, 2011. - 2. Means, L. Thomas and Elaine Langlois. English & Communication For Colleges. Cengage Learning ,USA: 2007 - 3. Redston, Chris &Gillies Cunningham Face 2 Face (Pre-intermediate Student's Book& Workbook) Cambridge University Press, New Delhi: 2005 - 4. Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skills for Business English. Cambridge University Press, Cambridge: Reprint 2011 - 5. Dutt P. Kiranmai and Rajeevan Geeta Basic Communication Skills, Foundation Books: 2013 John Eastwood et al: Be Grammar Ready: The Ultimate Guide to English Grammar, Oxford University Press: 2020. #### **COURSE OUTCOMES** Upon completion of the course, the students will be able to - Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies. - Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic. - **CO3** Read different genres of texts adopting various reading strategies. - CO4 Listen/view and comprehend different spoken discourses/excerpts in different accents - CO5 Identify topics and formulate questions for productive inquiry | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|------|------|------|-----|-------|-------|------|---|---|---|---|--------|-------------------| | COs | | | | | PROG | RAM | оитсо | MES (| POs) | | | | | RAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PSO1 | PSO2 | PSO3 | | | | | | | | | | | | CO1 | | , | | | | , | , | , | 2 | 3 | - | - | 2 | - | 2 | | CO2 | - | 1 | - | 2 | - | - | 2 | - | 2 | | | | | | | | СОЗ | - | 2 | - | 3 | - | - | - | - | - | 2 | - | - | 2 | - | 1 | | CO4 | - | - | - | - | - | - | - | 2 | - | 2 | | | | | | | CO5 | ľ | 2 | 1 | 1 | 2 | í | 2 | - | - | 3 | - | - | 1 | - | 2 | #### MA1102 #### **ENGINEERING MATHEMATICS -I** #### **OBJECTIVES:** - The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus. - The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modeling the engineering problems mathematically and obtaining solutions. - Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering. - This is a foundation course of Single Variable and multivariable calculus plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines. #### UNIT I: **MATRICES** 12 Eigenvalues and Eigenvectors of a real matrix - Characteristic equation - Properties of Eigenvalues and Eigenvectors - Cayley-Hamilton theorem - Diagonalization of matrices -Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms CO1 #### UNIT II: **CALCULUS OF ONE VARIABLE** 12 Limit of a function - Continuity - Derivatives - Differentiation rules - Interval of increasing and decreasing functions - Maxima and Minima - Intervals of concavity and convexity. CO₂ #### UNIT III: **CALCULUS OF SEVERAL VARIABLES** 12 Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables - Maxima and minima of functions of two variables - Lagrange's method of undetermined multipliers. CO₃ #### **UNIT IV: INTEGRAL CALCULUS** 12 Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals. CO₄ #### UNIT V: **MULTIPLE
INTEGRALS** 12 Double integrals - Change of order of integration - Double integrals in polar coordinates - Area enclosed by plane curves – Change of variables from Cartesian to polar in double integrals-Triple CO₅ integrals – Volume of solids #### **TOTAL PERIODS: 60** #### **TEXT BOOKS:** - 1. Grewal B.S., Higher Engineering Mathematics , Khanna Publishers, New Delhi, 43rd Edition, 2014. - 2. James Stewart, "Calculus: Early Transcendental", Cengage Learning, 7th Edition, New Delhi,2015. [For Units I & III - Sections 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.2 - 7.4 and 7.8]. #### **REFERENCES:** - 1. Anton, H. Bivens, I and Davis, S, "Calculus", Wiley, 10th Edition, 2016. - 2. Jain R.K. and Iyengar S.R.K., —Advanced Engineering MathematicsII, Narosa Publications, New Delhi, 3rd Edition, 2007. - 3. Narayanan, S. and Manicavachagom Pillai, T. K., —Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2007. - 4. Srimantha Pal and Bhunia, S.C, "Engineering Mathematics" Oxford University Press, 2015. - 5. T. Veerarajan. Engineering Mathematics I, McGraw Hill Education; First edition 2017. #### **COURSE OUTCOMES** Upon completion of the course, the students will be able to - Have a clear idea of matrix algebra pertaining Eigenvalues and Eigenvectors in addition dealing with quadratic forms. - Understand the concept of limit of a function and apply the same to deal with continuity and derivative of a given function. Apply differentiation to solve maxima and minima problems, which are related to real world problems. - Have the idea of extension of a function of one variable to several variables. Multivariable functions of real variables are inevitable in engineering. - Understand the concept of integration through fundamental theorem of calculus. Also acquire skills to evaluate the integrals using the techniques of substitution, partial fraction and integration by parts along with the knowledge of improper integrals. - CO5 Do double and triple integration so that they can handle integrals of higher order which are applied in engineering field. | | | | | | M | IAPPIN | G OF (| COs WI | тн Ро | s AND F | PSOs | | | | | |-----|-----|-----|-----|-----|------|--------|--------|--------|-------|---------|-------------|---|---|-------------------|---| | COs | | | | | PROC | GRAM (| OUTCO | MES (| POs) | | | | | RAM SP
OMES (F | | | | PO1 | PO2 | PO3 | PO4 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | | | CO1 | 3 | 3 | 3 | 1 | 2 | 3 | | | 3 | 2 | 3 | 3 | 3 | 3 | 2 | | CO2 | 3 | 3 | 3 | 2 | 1 | 2 | 3 | 3 | 2 | | | | | | | | СОЗ | 3 | 3 | 3 | 2 | 2 | 1 | - | - | - | - | 1 | 2 | 2 | 3 | 2 | | CO4 | 3 | 3 | 3 | 2 | 2 | 1 | 2 | 2 | 3 | 1 | | | | | | | CO5 | 3 | 3 | 3 | 2 | 1 | 1 | - | - | - | - | 1 | 2 | 2 | 3 | 1 | #### PH1103 #### **ENGINEERING PHYSICS** L T P C 3 0 0 3 #### **OBJECTIVES:** - To make the students to understand about the elastic property and stress strain diagram. - To educate the students about principle of laser and its role in optical fibers and its applications as sensors and communication. - To teach the students about the heat transfer through solids and liquids. - To educate the students about the quantum concepts and its use to explain black body radiation, Compton effect, tunnelling electron microscopy and its applications. - To make the students to understand the importance of various crystal structures and various growth techniques. #### UNIT I: PROPERTIES OF MATTER 9 Elasticity – Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength – torsional stress and deformations – twisting couple - torsion pendulum: theory and experiment - bending of beams - bending moment – cantilever: theory and experiment – uniform and non-uniform bending: theory and experiment – Practical applications of modulus of elasticity-I-shaped girders - stress due to bending in beams. CO1 #### UNIT II: LASER AND FIBER OPTICS 9 Lasers: population of energy levels, Einstein's A and B coefficients derivation – resonant cavity, optical amplification (qualitative) – Nd-YAG Laser-Semiconductor lasers: homojunction and heterojunction – Industrial and medical applications of Laser– Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) – losses associated with optical fibers – Fabrication of Optical fiber-Double crucible method-fibre optic sensors: pressure and displacement-Industrial and medical applications of optical fiber-Endoscopy-Fiber optic communication system. CO₂ #### UNIT III: THERMAL PHYSICS 9 Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity –Rectilinear flow of heat- Lee's disc method: theory and experiment - conduction through compound media (series and parallel)-Radial flow of heat- thermal insulation – applications: heat exchangers, refrigerators, oven, Induction furnace and solar water heaters. CO₃ #### UNIT IV: QUANTUM PHYSICS 9 Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunnelling (qualitative) - scanning tunnelling microscope-Applications of electron microscopy. CO4 #### UNIT V: CRYSTAL PHYSICS 9 Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques-Epitaxial growth-Applications of Single crystal (Qualitative). **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2019. - 2. Gaur, R.K. & Gupta, S.L. "Engineering Physics". Dhanpat Rai Publishers, 2017. - 3. Pandey, B.K. & Chaturvedi, S. "Engineering Physics". Cengage Learning India, 2019. #### REFERENCES: - 1. Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015. - 2. Serway, R.A. & Jewett, J.W. "Physics for Scientists and Engineers". Cengage Learning, 2019. - 3. Tipler, P.A. & Mosca, G. "Physics for Scientists and Engineers with Modern Physics'. W.H.Freeman, 2007. #### **COURSE OUTCOMES** Upon completion of the course, - **CO1** Gain knowledge on the basics of properties of matter and its applications, - Acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics. - Have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers. - Get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and - CO5 Understand the basics of crystals, their structures and different crystal growth techniques. | | | | | | M | APPIN | IG OF | COs W | /ITH P | Os AND | PSOs | | | | | | |-----|-----|---|---|---|------|-------|-------|-------|--------|--------|------|---|---|---------|---|--| | COs | | | | | PROG | RAM C | UTCO | MES (| POs) | | | | | GRAM SF | | | | | PO1 | 1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 | | | | | | | | | | | | | | | | CO1 | 3 | | - | 1 | 2 | | | - | - | - | 1 | 1 | 1 | 1 | 2 | | | CO2 | 2 | 2 | 1 | 3 | 2 | 1 | | - | - | 1 | 1 | 2 | 2 | 2 | 3 | | | СОЗ | 2 | 2 | 1 | 3 | 2 | 1 | - | - | - | 1 | 1 | 2 | 2 | 2 | 3 | | | CO4 | 2 | 2 | 1 | 3 | 3 | 1 | 2 | - | - | 1 | 1 | 2 | 2 | 2 | 3 | | | CO5 | 2 | 2 | 2 | 3 | 3 | 2 | - | 1 | - | 2 | 1 | 2 | 2 | 2 | 3 | | ### CY1104 #### **ENGINEERING CHEMISTRY** L T P C 3 0 0 3 #### **OBJECTIVES:** - Principles of water characterization and treatment for industrial purposes. - Principles and applications of surface chemistry and catalysis. - Phase rule and various types of alloys. - Various types of fuels, applications and combustion. - Conventional and non-conventional energy sources and energy storage device. #### UNIT I: WATER AND ITS TREATMENT 9 Hardness of water – Types – Expression of hardness – Units – Estimation of hardness by EDTA method – Numerical problems on EDTA method – Boiler troubles (scale and sludge, caustic embrittlement, boiler corrosion, priming and foaming) – Treatment of boiler feed water – Internal treatment (carbonate, phosphate, colloidal, sodium aluminate and calgon conditioning) – External treatment – Ion exchange process, Zeolite process – Desalination of brackish water by reverse Osmosis. CO1 #### UNIT II: SURFACE CHEMISTRY AND CATALYSIS 9 **Surface chemistry:** Types of adsorption – Adsorption of gases on solids – Adsorption of solute from solutions – Adsorption isotherms – Freundlich's adsorption isotherm – Langmuir's adsorption isotherm – Kinetics of uni-molecular surface reactions – Adsorption in chromatography – Applications of adsorption in pollution abatement using PAC. CO2 **Catalysis:** Catalyst – Types of catalysis – Criteria – Contact theory – Catalytic poisoning and catalytic promoters – Industrial applications of catalysts – Catalytic convertor – Auto catalysis – Enzyme catalysis – Michaelis-Menten equation. #### UNIT III: PHASE RULE AND ALLOYS 9 **Phase rule:** Introduction – Definition of terms with examples – One component system – Water system – Reduced phase rule – Thermal analysis and cooling curves – Two component systems – Lead-silver system –
Pattinson process. CO₃ **Alloys:** Introduction – Definition – Properties of alloys – Significance of alloying – Functions and effect of alloying elements – Nichrome, Alnico, Stainless steel (18/8) – Heat treatment of steel – Non-ferrous alloys – Brass and bronze. #### UNIT IV: FUELS AND COMBUSTION 9 **Fuels:** Introduction – classification of fuels – Comparison of solid, liquid, gaseous fuels – Coal – Analysis of coal (proximate and ultimate). – Carbonization – Manufacture of metallurgical coke (Otto Hoffmann method) – Petroleum – Cracking – Manufacture of synthetic petrol (Bergius process, Fischer Tropsch Process) – Knocking – Octane number – Diesel oil – Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alcohol and biodiesel. CO₄ **Combustion of fuels:** Introduction – Calorific value – Higher and lower calorific values – Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysis by Orsat Method. #### UNIT V: NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES 9 Nuclear energy – Fission and fusion reactions – Differences – Chain reactions – Nuclear reactors – Classification of reactors – Light water nuclear reactor for power generation – Breeder reactor – Solar energy conversion – Solar cells – Wind energy – Fuel cells – Hydrogen-oxygen fuel cell . Batteries – Types of batteries - Alkaline batteries – Lead-acid, Nickel-cadmium and Lithium batteries. CO₅ **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. P.C.Jain, Monica Jain, "Engineering Chemistry" 17th Ed. Dhanpat Rai Pub. Co., New Delhi, (2015). - 2. S.S. Dara, S.S. Umare, "A text book of Engineering Chemistry" S.Chand & Co.Ltd., New Delhi (2020). - 3. S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", Wiley India (P) Ltd. New Delhi, (2018). - 4. P. Kannan, A. Ravikrishnan, "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company (P) Ltd. Chennai, (2009). #### **REFERENCES:** - 1. B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001). - 2. B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008). - 3. Prasanta Rath, "Engineering Chemistry", Cengage Learning India (P) Ltd., Delhi, (2015). - 4. Shikha Agarwal, "Engineering Chemistry–Fundamentals and Applications", Cambridge University Press, Delhi, (2015). - 5. A. Pahari, B. Chauhan, "Engineering Chemistry", Firewall Media., New Delhi., (2010). - 6. Sheik Mideen., Engineering Chemistry, Airwalk Publications, Chennai (2018). #### **COURSE OUTCOMES** Upon completion of the course, - Able to understand impurities in industrial water, boiler troubles, internal and external treatment methods of purifying water. - Able to understand concepts of absorption, adsorption, adsorption isotherms, application of adsorption for pollution abatement, catalysis and enzyme kinetics. - Able to recognize significance of alloying, functions of alloying elements and types of alloys, uses of alloys. They should be acquainted with phase rule and reduced phase and its applications in alloying. - Able to identify various types of fuels, properties, uses and analysis of fuels. They should be able to understand combustion of fuels, method of preparation of bio-diesel, synthetic petrol. - Able to understand conventional, non-conventional energy sources, nuclear fission and fusion, - power generation by nuclear reactor, wind, solar energy and preparation, uses of various batteries. | | | | | | MA | PPING | OF C | Os WI | тн ро | s AND I | PSOs | | | | | |-----|-----|-----|-----|-----|------|-------|-------|-------|-------|---------|------|---|---|--------|-------------------| | COs | | | | | PROG | RAM | OUTCO | OMES | (POs) | | | | | RAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | | | CO1 | 3 | 3 | 3 | 3 | 3 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | | CO2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | | CO3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | CO4 | 3 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 1 | 2 | | CO5 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 3 | #### GE1105 PROBLEM SOLVING AND PYTHON PROGRAMMING L T P C 3 0 0 3 #### **OBJECTIVES:** - To know the basics of algorithmic problem solving - To write simple python programs - To develop python program by using control structures and functions - To use python predefined data structures - To write file-based program #### UNIT I: ALGORITHMIC PROBLEM SOLVING 9 Algorithms, Building blocks of algorithms: statements, state, control flow, functions, Notation: pseudo code, flow chart, programming language, Algorithmic problem solving: Basic algorithms, flowcharts and pseudocode for sequential, decision processing and iterative processing strategies, Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi. CO1 #### UNIT II: INTRODUCTION TO PYTHON 9 Python Introduction, Technical Strength of Python, Python interpreter and interactive mode, Introduction to colab, pycharm and jupyter idle(s), Values and types: int, float, boolean, string, and list; Built-in data types, variables, Literals, Constants, statements, Operators: Assignment, Arithmetic, Relational, Logical, Bitwise operators and their precedence, Expressions, tuple assignment, Accepting input from Console, printing statements, Simple Python programs. CO2 #### UNIT III: CONTROL FLOW, FUNCTIONS AND STRINGS 9 Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: while, for; Loop manipulation using pass, break, continue, and else; Modules and Functions: function definition and use, flow of execution, parameters and arguments, local and global scope, return values, function composition, recursion. Strings: string slices, immutability, string functions and methods, string module; Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search. CO₃ #### UNIT IV: LISTS, TUPLES, DICTIONARIES 9 Lists: Defining list and list slicing, list operations, list slices, list methods, list loop, list Manipulation, mutability, aliasing, cloning lists, list parameters, lists as arrays. Tuples: tuple assignment, tuple as return value, tuple Manipulation; Dictionaries: operations and methods; advanced list processing – list comprehension; Illustrative programs: selection sort, insertion sort, merge sort, histogram. CO₄ #### UNIT V: FILES, MODULES, PACKAGES 5 Files and exception: Concept of Files, Text Files; File opening in various modes and closing of a file, Format Operators, Reading from a file, Writing onto a file, File functions- open(), close(), read(),readline(), readlines(),write(), writelines(),tell(),seek(), Command Line arguments; Errors and exceptions: handling exceptions; modules, packages; introduction to numpy, matplotlib. Illustrative programs: word count, copy a file. CO₅ **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/) - 2. Guido van Rossum and Fred L. Drake Jr, An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011. - 3. Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press, 2019. #### **REFERENCES:** - 1. John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press , 2013 - 2. Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016. - 3. Timothy A. Budd, —Exploring Pythonll, Mc-Graw Hill Education (India) Private Ltd.,, 2015. - 4. Kenneth A. Lambert, —Fundamentals of Python: First ProgramsII, CENGAGE Learning, 2012. - 5. Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013. - 6. Paul Gries, Jennifer Campbell and Jason Montojo, —Practical Programming: An Introduction. #### **COURSE OUTCOMES** Upon completion of the course, - **CO1** Develop algorithmic solutions to simple computational problems - **CO2** Develop simple console application in python - **CO3** Develop python program by applying control structure and decompose program into functions. - **CO4** Represent compound data using python lists, tuples, and dictionaries. - **CO5** Read and write data from/to files in Python. | | | | | | MA | PPING | OF C | Os WIT | TH PO | AND P | SOs | | | | | |-----|-----|---|---|---|------|-------|------|--------|-------|-------|-----|---|---|---------|---| | COs | | | | | PROG | RAM C | UTCO | MES (| POs) | | | | | GRAM SE | | | | PO1 | 01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PS | | | | | | | | | | | | | | | CO1 | 3 | 3 | 3 | 3 | 2 | - | - | - | - | 2 | 2 | 2 | 3 | 3 | 2 | | CO2 | 3 | 3 | 3 | 3 | 2 | - | - | - | - | 2 | 2 | 2 | 3 | 3 | 2 | | CO3 | 3 | 3 | 3 | 3 | 2 | - | - | | - | 2 | 2 | 2 | 3 | 3 | 2 | | CO4 | 3 | 3 | 3 | 3 | 2 | - | - | - | - | 2 | 2 | 2 | 3 | 3 | 2 | | CO5 | 3 | 3 | 3 | 3 | 2 | - | - | - | - | 2 | 2 | 2 | 3 | 3 | 2 | ### **GE1106 ENGINEERING GRAPHICS OBJECTIVES:** To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products To expose them to existing national standards related to technical drawings. **CONCEPTS AND CONVENTIONS (Not for Examination)** 1 Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications - Size, layout and folding of drawing sheets - Lettering and dimensioning. UNIT I: PLANE CURVES AND FREEHAND SKETCHING 7+12 Basic Geometrical
constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves. **CO1** Visualization concepts and Free Hand sketching: Visualization principles -Representation of Three-Dimensional objects – Layout of views- Freehand sketching of multiple views from pictorial views of objects UNIT II: PROJECTION OF POINTS, LINES AND PLANE SURFACE 6+12 Orthographic projection- principles-Principal Planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes -Determination of true lengths and true inclinations by rotating line method and traces Projection CO₂ of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method. UNIT III: **PROJECTION OF SOLIDS** 5+12 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method. CO₃ **UNIT IV:** PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF 5+12 **SURFACES** Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other - obtaining true shape of section. CO₄ Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones. **UNIT V:** ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+12 Principles of isometric projection – isometric scale –Isometric projections of simple solids and **TOTAL PERIODS: 90** CO₅ truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method. #### **TEXT BOOKS:** - 1. Natarajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, Twenty Ninth Edition 2016 - 2. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2011. #### REFERENCES: - 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019. - 2. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008. - 3. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2018. - 4. Luzzader, Warren.J. and Duff,John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Comput er Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005. - 5. N S Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015. - 6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009. #### **COURSE OUTCOMES** Upon completion of the course, the students will - CO1 Understand the fundamentals and standards of Engineering graphics - CO2 Perform freehand sketching of basic geometrical constructions and multiple views of objects - CO3 Understand the concept of orthographic projections of lines and plane surfaces - CO4 Draw the projections of section of solids and development of surfaces - CO5 Visualize and to project isometric and perspective sections of simple solids | | | | | | MAF | PPING | OF CC | Os WITI | H POs | AND PS | Os | | | | | |-----|-----|-----|-----|------|-------|-------|-------|---------|-------|--------|----|---|---|-------|-------------------| | COs | | | | | PROGI | RAM C | UTCO | MES (I | POs) | | | | | RAM S | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | | | | CO1 | 1 | 2 | 1 | 2 | 1 | 1 | | - | 3 | 3 | 2 | 3 | 1 | 1 | 1 | | CO2 | 3 | 1 | 2 | 2 | 1 | 1 | | - | 3 | 3 | 2 | 3 | 1 | 1 | 1 | | СОЗ | 3 | 1 | 1 | 3 | 1 | 1 | - | - | 3 | 3 | 2 | 3 | 1 | 1 | 1 | | CO4 | 3 | 1 | 1 | 3 | 1 | 1 | - | - | 3 | 3 | 2 | 3 | 1 | 1 | 1 | | CO5 | 3 | 1 | 2 | 3 | 1 | 1 | - | - | 3 | 3 | 2 | 3 | 1 | 1 | 1 | #### GE1107 PYTHON PROGRAMMING LABORATORY L T P C 0 0 4 2 #### **OBJECTIVES** - To write, test, and debug simple Python programs. - To implement Python programs with conditionals and loops. - Use functions for structuring Python programs. - Represent compound data using Python lists, tuples, and dictionaries. - Read and write data from/to files in Python. #### LIST OF EXPERIMENTS - 1. Write an algorithm and draw flowchart illustrating mail merge concept. - 2. Write an algorithm, draw flowchart and write pseudo code for a real life or scientific or technical problems - 3. Scientific problem-solving using decision making and looping. CO1 - Armstrong number, palindrome of a number, Perfect number. - 4. Simple programming for one dimensional and two-dimensional arrays. - Transpose, addition, multiplication, scalar, determinant of a matrix - 5. Program to explore string functions and recursive functions. - 6. Utilizing 'Functions' in Python - Find mean, median, mode for the given set of numbers in a list. - Write a function dups to find all duplicates in the list. - Write a function unique to find all the unique elements of a list. CO₂ - Write function to compute gcd, lcm of two numbers. - 7. Demonstrate the use of Dictionaries and tuples with sample programs. - 8. Implement Searching Operations: Linear and Binary Search. - 9. To sort the 'n' numbers using: Selection, Merge sort and Insertion Sort. - 10. Find the most frequent words in a text of file using command line arguments. - 11. Demonstrate Exceptions in Python. CO₃ 12. Applications: Implementing GUI using turtle, pygame. **TOTAL PERIODS: 60** #### REFERENCE BOOKS - 1. Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press, 2019 - 2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", Second Edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016. - 3. Shroff "Learning Python: Powerful Object-Oriented Programming; Fifth edition, 2013. - 4. David M.Baezly "Python Essential Reference". Addison-Wesley Professional; Fourth edition, 2009. - 5. David M. Baezly "Python Cookbook" O'Reilly Media; Third edition (June 1, 2013) #### **WEB REFERENCES** http://www.edx.org #### **COURSE OUTCOMES** Upon completion of the course, **CO1** Develop simple console applications through python with control structure and functions CO2 Use python built in data structures like lists, tuples, and dictionaries for representing compound data. **CO3** Read and write data from/to files in Python and applications of python. | | | | | | MA | PPING | OF CO | Os WIT | H POs | AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|-------|-------|--------|-------|-------|------|------|------|--------|-------------------| | COs | | | | | PROG | RAM C | UTCO | MES (| POs) | | | | | RAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 3 | 3 | 3 | 2 | - | | - | - | 2 | 2 | 2 | 3 | 3 | 2 | | CO2 | 3 | 3 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | | | | | | | | CO3 | 3 | 3 | 3 | 3 | 2 | - | - | - | - | 2 | 2 | 2 | 3 | 3 | 2 | **BS1108** ### PHYSICS AND CHEMISTRY LABORATORY LTPC 0 0 4 2 #### **OBJECTIVES** The students will be trained to perform experiments to study the following. - The Properties of Matter - The Optical properties, Characteristics of Lasers & Optical Fibre - Electrical & Thermal properties of Materials - Enable the students to enhance accuracy in experimental measurements. - To make the student to acquire practical skills in the determination of water quality parameters through volumetric analysis - Instrumental method of analysis such as potentiometry, conductometry and pHmetry #### LIST OF EXPERIMENTS- PHYSICS (A minimum of 5 experiments to be performed from the given list) 1. Determination of Young's modulus of the material of the given beam by Non-uniform bending method. CO1 CO1 | 2. | Determination of rigidity modulus of the material of the given wire using torsion lulum. | | |-------|--|------------| | 3. | Determination of wavelength of mercury spectra using Spectrometer and grating. | CO2 | | 4. | Determination of dispersive power of prism using Spectrometer. | CO2 | | 5. | (a) Determination of wavelength and particle size using a laser. | CO2 | | - | (b) Determination of numerical aperture and acceptance angle of an optical fibre. | CO1 | | | (c) Determination of width of the groove of compact disc using laser | | | 6. | Determination of Young's modulus of the material of the given beam by uniform | CO2 | | bend | ling method. | CO2 | | 7. | Determination of energy band gap of the semiconductor. | | | 8. | Determination of coefficient of thermal conductivity of the given bad conductor using | CO1 | | Lee's | s disc. | | | DEN | IONSTRATION EXPERIMENT | | | | 1. Determination of thickness of a thin sheet / wire – Air wedge method | | | | LIST OF EXPERIMENTS – CHEMISTRY | | | (A m | inimum of 6 experiments to be performed from the given list) | | | 1. | Estimation of HCl using Na ₂ CO ₃ as primary standard and determination of alkalinity in water sample. | CO5 | | 2. | Determination of total, temporary & permanent hardness of water by EDTA method. | CO5 | | 3. | Determination of DO content of water sample by Winkler's method. | CO3 | | 4. | Determination of chloride content of water sample by argentometric method. | CO3 | | 5. | Estimation of copper content of the given solution by lodometry. | CO4 | | 6. | Determination of strength of given hydrochloric acid using pH meter. | CO4
CO4 | | 7. | Determination of strength of acids in a mixture of acids using conductivity meter. | CO4 | | 8. | Estimation of iron content of the given solution using potentiometer. | | |
 · · | CO3 | | 9. | Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer. | 005 | | 10. | Conductometric titration of strong acid vs strong base. | CO5 | | | MONSTRATION EXPERIMENTS | | | 1. | Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline / thiocyanate method). | | | 2. | Estimation of sodium and potassium present in water using flame photometer. | | | | | | 30 **TOTAL: 60 PERIODS** #### **COURSE OUTCOMES** Upon completion of the course, the students will be Able to understand the concept about the basic properties of matter like stress, strain and types of moduli. Able to understand the concept of optics like reflection, refraction, diffraction by using spectrometer grating. Able to understand the thermal properties of solids, specific heat and some models for specific heat calculation. Able to understand the working principle of laser components and working of different laser system. Able to understand the phenomenon of light, applications of fibre optics. Able to understand the concept of determining the pH value by using pH meter. Able to understand the concept about the amount of chloride present in the given sample of water. Able to understand the concept of determining the emf values by using potentiometer Able to understand the concept about the measurement of conductance of strong acid and strong base by using conductivity meter. Able to understand the amount of dissolved oxygen present in the water. **CO5** Able to understand the concept of estimation of hardness of water by EDTA method. Able to understand the concept of estimation of alkalinity in water sample. | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | | | |----------------------------------|------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|----------------------------------|------|--| | COs | PROGRAM OUTCOMES (POs) | | | | | | | | | | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | CO1 | 3 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 3 | 2 | 2 | 3 | 2 | 2 | 2 | | | CO2 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | | | CO3 | 3 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | | | CO4 | 3 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | | | CO5 | 3 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | | #### **II SEMESTER** # HS1201 PROFESSIONAL ENGLISH L T P C 3 0 0 3 #### **OBJECTIVES:** - The Course prepares second semester engineering and Technology students to: - Develop strategies and skills to enhance their ability to read and comprehend Engineering and technology texts. - Foster their ability to write convincing job applications and effective reports. - Develop their speaking skills to make technical presentations, participate in group discussions. - Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialization. #### UNIT I: INTRODUCTION TO PROFESSIONAL ENGLISH 9 Listening: Listening to technical talks with comprehension tasks - Speaking – conversation methods in real life occurrences using expressions of different emotions and imperative usages - Reading – reading short technical texts from journals- newspapers- Writing- purpose statements – extended definitions – writing instructions – checklists-recommendations-Vocabulary Development- technical vocabulary Language Development – tenses- subject verb agreement - compound words. #### UNIT II: READING AND STUDY SKILLS 9 Listening-Listening Comprehension of a discussion on a technical topic of common interest by three or four participants (real life as well as online videos). -Speaking – describing a process- Reading: Practice in chunking and speed reading - Paragraphing- Writing- interpreting charts, graphs-Vocabulary Development: Important foreign expressions in Use, homonyms, homophones, homographs- easily confused words Language Development- impersonal passive voice, numerical adjectives. #### UNIT III: TECHNICAL WRITING AND GRAMMAR Listening – listening to conversation – effective use of words and their sound aspects, stress, intonation & pronunciation - Speaking – mechanics of presentations -Reading: Reading longer texts for detailed understanding. (GRE/IELTS practice tests); Writing-Describing a process, use of sequence words- Vocabulary Development- sequence words- Informal vocabulary and formal substitutes-Misspelled words. Language Development- embedded sentences and Ellipsis. #### UNIT IV: REPORT WRITING 9 Listening – Model debates & documentaries and making notes. Speaking – expressing agreement/disagreement, assertiveness in expressing opinions-Reading: Technical reports, advertisements and minutes of meeting - Writing- email etiquette- job application – cover letter – Résumé preparation(via email and hard copy)- analytical essays and issue based essays--Vocabulary Development- finding suitable synonyms-paraphrasing- Language Development-clauses- if conditionals. #### UNIT V: GROUP DISCUSSION AND JOB APPLICATIONS Listening: Extensive Listening. (radio plays, rendering of poems, audio books and others) Speaking –participating in a group discussion - Reading: Extensive Reading (short stories, novels, poetry and others) – Writing reports- minutes of a meeting- accident and survey- Writing a letter/ sending an email to the Editor - cause and effect sentences -Vocabulary Development- verbal analogies. Language Development- reported speech. **TOTAL PERIODS: 45** 9 9 #### **TEXT BOOKS:** - 1. Board of editors. Fluency in English A Course book for Engineering and Technology. Orient Blackswan, Hyderabad: 2020. - 2. Barun K Mitra, Effective Technical Communication Oxford University Press: 2006. - 3. Sudharshana.N.P and Saveetha. C. English for Technical Communication. Cambridge University Press: New Delhi, 2016. #### **REFERENCES:** - 1. Raman, Meenakshi and Sharma, Sangeetha-Technical Communication Principles and Practice. Oxford University Press: New Delhi, 2014. - 2. Kumar, Suresh. E. Engineering English. Orient Blackswan: Hyderabad, 2015 - 3. Booth-L. Diana, Project Work, Oxford University Press, Oxford: 2014. - 4. Grussendorf, Marion, English for Presentations, Oxford University Press, Oxford: 2007 - 5. Means, L. Thomas and Elaine Langlois, English & Communication For Colleges. Cengage Learning, USA: 2007. - 6. Caroline Meyer & Bringi dev, Communicating for Results Oxford University Press: 2021. - 7. Aruna Koneru, Professional Speaking Skills, Oxford University Press:2015. #### **COURSE OUTCOMES** Upon completion of the course, the students will be able to - Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies. - Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic. - **CO3** Read different genres of texts adopting various reading strategies. - CO4 Listen/view and comprehend different spoken discourses/excerpts in different accents - **CO5** Identify topics and formulate questions for productive inquiry | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | | |----------------------------------|-----|-----|----------------------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------| | COs | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | - | - | - | - | - | - | - | 2 | 3 | - | - | 1 | - | 2 | | CO2 | - | 1 | - | 2 | - | - | - | - | - | 3 | - | - | 1 | - | 2 | | СОЗ | - | 2 | - | 3 | - | - | - | - | - | 2 | - | - | 1 | - | 1 | | CO4 | - | - | - | - | - | - | - | - | 2 | 2 | - | - | 1 | - | 1 | | CO5 | - | 2 | 1 | 1 | 2 | - | - | - | - | 3 | - | - | 1 | - | 2 | #### MA1202 #### **ENGINEERING MATHEMATICS - II** #### **OBJECTIVES:** - This course is designed to cover topics such as Differential Equations, Vector Calculus, Complex Analysis and Laplace Transform. - The various methods of complex analysis and Laplace transforms can be used for efficiently solving the problems that occur in various branches of engineering disciplines #### UNIT I: **ORDINARY DIFFERENTIAL EQUATIONS** 12 Higher order linear differential equations with constant coefficients - Method of variation of parameters- Homogenous equation of Euler's and Legendre's type - System of simultaneous CO1 first order linear differential equations with constant coefficients #### UNIT II: **VECTOR CALCULUS** 12 Gradient and directional derivative - Divergence and curl - Vector identities - Irrotational and Solenoidal vector fields - Line integral over a plane curve - Surface integral - Volume integral -Green's, Gauss divergence and Stoke's theorems - Verification and simple application in evaluating line, surface and volume integrals. CO₂ #### UNIT III: **COMPLEX VARIABLES** 12 Analytic functions - Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates (C-R equations) - Properties - Harmonic conjugates - Construction of analytic function (Milne-Thomson method) – Conformal mapping – Standard transformations W = Z + C, CZ, 1/Z - Bilinear transformation. CO₃ #### **UNIT IV: COMPLEX INTEGRATION** 12 Cauchy's integral theorem -Cauchy's integral formula - Taylor's and Laurent's series -Singularities - Residues - Cauchy's Residue theorem - Application of residue theorem for evaluation of real integrals – Use of circular contour and semi-circular contour(excluding poles on the real line). CO₄ #### UNIT V: LAPLACE TRANSFORMS 12 Existence conditions – Transforms of elementary functions – Transform of unit step function and unit impulse function - Basic properties - Shifting theorems - transforms of derivatives and integrals - Transform of periodic
functions - Inverse transforms using properties, partial fractions and Convolution theorem -Application to solution of linear second order ordinary differential equations with constant coefficients. CO₅ #### **TOTAL PERIODS: 60** #### **TEXT BOOKS:** - 1. Grewal B.S., —Higher Engineering Mathematics ||, Khanna Publishers, New Delhi, 43rd Edition, 2014. - 2. Kreyszig Erwin, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016 #### REFERENCES: - 1. G Bali N., Goyal M. and Watkins C., —Advanced Engineering MathematicsII, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009. - 2. Jain R.K. and Iyengar S.R.K., Advanced Engineering Mathematics II, Narosa Publications, New Delhi, 3rd Edition, 2007. - 3. O'Neil, P.V. —Advanced Engineering MathematicsII, Cengage Learning India Pvt., Ltd, New Delhi, 2007. - 4. Sastry, S.S., —Engineering Mathematics", Vol. I & II, PHI Learning Pvt. Ltd,4th Edition, New Delhi, 2014. - 5. Wylie, R.C. and Barrett, L.C., —Advanced Engineering Mathematics —Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012 #### **COURSE OUTCOMES** Upon completion of the course, - The students will be imbibed with techniques in solving ordinary differential equations that arises in most of the engineering problems - The students will be acquainted with the concepts of vector calculus like Gradient, Divergence, Curl, Directional derivative, Irrotational vector and Solenoidal vector. The course gives an understanding of Vector integration, needed for problems in all engineering disciplines. - The students will develop an understanding of the standard techniques of complex variable and mapping so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow of electric current. - The student will be exposed to the concept of Cauchy's integral theorem, Taylor and Laurent expansions, Singular points, Application of residue theorem to evaluate complex integrals. - Students will understand the purpose of using transforms to create new domain which can give easier ways to handle the problem that is being investigated. | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | | |----------------------------------|-----|-----|-----|----------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | COs | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 3 | 3 | 3 | 2 | 1 | - | • | • | - | 1 | 2 | 2 | 1 | 1 | | CO2 | 3 | 3 | 3 | 1 | 1 | 1 | - | , | , | - | 2 | 1 | 2 | 1 | 1 | | СОЗ | 3 | 3 | 3 | 2 | 1 | 1 | - | 1 | - | - | 1 | 1 | 1 | 1 | - | | CO4 | 3 | 3 | 3 | 1 | - | - | - | - | - | - | 1 | - | 1 | 1 | 1 | | CO5 | 3 | 3 | 3 | 1 | - | - | - | - | - | - | 1 | - | 1 | 1 | - | #### PH1255 #### **PHYSICS OF MATERIALS** L T P C 3 0 0 3 #### **OBJECTIVES:** To make the student conversant with the - Electronic properties in metals, properties of superconductors and its applications. - Intrinsic and extrinsic semi conductors, Hall effect, LED, organic LED and solar cells. - Types of magnetic materials and their applications, types of polarization and application - Types, synthesis, properties and applications of nanostructured materials. - Importance of various new engineering materials like ceramics, SMA, metallic glasses and biomaterials. #### UNIT I: CONDUCTING AND SUPERCONDUCTING MATERIALS 9 Classical free electron theory – expression for electrical conductivity – thermal conductivity, Wiedemann-Franz law – electrons in metals: particle in a three-dimensional box (Qualitative) – degenerate states – Fermi-Dirac statistics – density of energy states – electron in periodic potential (concept only) – electron effective mass – concept of hole – Superconducting phenomena, properties of superconductors – Meissner effect and isotope effect. Type I and Type II superconductors, High Tc superconductors – Magnetic levitation and SQUIDS. CO1 #### UNIT II: SEMICONDUCTING MATERIALS 9 Elemental Semiconductors – Compound semiconductors – Origin of band gap in solids (qualitative) – carrier concentration in an intrinsic semiconductor (derivation) – Fermi level –variation of Fermi level with temperature – electrical conductivity – band gap determination – carrier concentration in n-type and p-type semiconductors (derivation) – variation of Fermi level with temperature and impurity concentration – Hall effect – determination of Hall coefficient – LED – Organic LED-Solar cells. CO₂ #### UNIT III: DIELECTRIC AND MAGNETIC MATERIALS 9 Dielectric materials – Electronic, Ionic, Orientational and space charge polarization –Internal field and deduction of Clausius Mosotti equation –Frequency and temperature variation of dielectric materials- dielectric loss – different types of dielectric breakdown – classification of insulating materials and their applications - Introduction to magnetic materials - Domain theory of ferromagnetism, Hysteresis, Soft and Hard magnetic materials – Anti-ferromagnetic materials – Ferrites - magnetoresistance - Giant magnetoresistance - Introduction to spintronics. CO₃ #### UNIT IV: NANO MATERIALS 9 Nanoscience and technology – Surface to volume ratio – Classifications of nanostructured materials – nano particles – quantum dots, nanowires, ultra-thin films-multilayered materials. Bottom-up Synthesis –Top-down Approach: Co-Precipitation, Ultrasonication, ball Milling, sol-gel method-Properties: electrical, magnetic, catalytic and antimicrobial resistance – Applications of nanomaterials in agriculture and medicine. CO4 #### UNIT V: NEW MATERIALS AND APPLICATIONS 9 Metallic glasses – Shape memory alloys: Copper, Nickel and Titanium based alloys – graphene, graphene oxide and its properties – Ceramics: types and applications – Composites:classification, role of matrix and reinforcement – processing of fibre reinforced plastics and fibre reinforced metals – Biomaterials: hydroxyapatite – PMMA – Silicone – Sensors: Chemical Sensors - Bio-sensors – conducting and semiconducting polymers – Nano fluids-Electro and magneto rheological fluids.. CO5 **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. Balasubramaniam, R. "Callister's Materials Science and Engineering". Wiley India Pvt. Ltd. 2014. - 2. Kasap, S.O. "Principles of Electronic Materials and Devices". McGraw-Hill Education, 2017. - 3. Wahab, M.A. "Solid State Physics: Structure and Properties of Materials". Narosa Publishing House, 2009. #### **REFERENCES:** - 1. Askeland, D. "Materials Science and Engineering". Brooks/Cole, 2010 - 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015. - 3. Smith, W.F., Hashemi, J. & Prakash. R. "Materials Science and Engineering". Tata McGraw Hill Education Pvt. Ltd., 2014. # **COURSE OUTCOMES** Upon completion of the course, - Have the knowledge about carrier density calculation in metals, properties of superconductors and its applications. - Have the knowledge about carrier density calculation in intrinsic and extrinsic semiconductors, Hall effect, LED, OLED and solar cells - CO3 Obtain the knowledge about magnetic and dielectric materials and their applications. - **CO4** Explore the knowledge about types, synthesis, properties and applications of nanostructured materials. - CO5 Understand the importance, properties and applications of various new engineering materials like ceramics, SMA, metallic glasses and biomaterials. | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|---|---|---|---|------|-------|-------|-------|------|---|---|---|---|---------|------| | COs | | | | | PROG | RAM C | OUTCO | MES (| POs) | | | | | GRAM SF | | | | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1 | | | | | | | | | | | | | PSO2 | PSO3 | | CO1 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | | CO2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | | СОЗ | 3 | 3 | 2 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 2 | 1 | | CO4 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 1 | 2 | 1 | 2 | 3 | 3 | 2 | 1 | | CO5 | 3 | 3 | 3 | 3 | 2 | 3 | 2 | 1 | 2 | 1 | 2 | 3 | 3 | 2 | 1 | ### **GE1204** #### **ENVIRONMENTAL SCIENCE AND ENGINEERING** L T P C 3 0 0 3 #### **OBJECTIVES:** - To study the inter relationship between living organism and environment. - To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value. - To find and implement scientific, technological, economic and political solutions to environmental problems. - To study the integrated themes and biodiversity, natural resources, pollution control and waste management. - To study the dynamic processes and understand the features of the earth's interior and surface. ### UNIT I: ENVIRONMENT. ECOSYSTEM AND BIODIVERSITY 9 Definition, scope and importance of environment – Need for public awareness – Role of Individual in Environmental protection – Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Food chains, food webs and ecological pyramids – Ecological succession – Types, characteristic features, structure and function of forest, grass land, desert and aquatic (ponds, lakes, rivers, oceans, estuaries) ecosystem. Biodiversity – Definition – Genetic, species and ecosystem diversity – Value of biodiversity – Consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega–diversity nation – Hot spots of biodiversity – Threats to biodiversity – Habitat loss, poaching of wild life, human-wildlife conflicts – Wildlife protection act and forest conservation act –Endangered and endemic species – Conservation of
biodiversity – In-situ and ex–situ conservation of biodiversity. **CO1** ### UNIT II: ENVIRONMENTAL POLLUTION Q Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: causes, effects and control measures of municipal solid wastes – Problems of e-waste – Role of an individual in prevention of pollution – Pollution case studies – Disaster management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural. CO₂ # UNIT III: NATURAL RESOURCES 9 Forest resources: Use and over-exploitation — Deforestation — Case studies — Timber extraction, mining, dams and their effects on forests and tribal people — Water resources — Use and overutilization of surface and ground water, floods, drought, conflicts over water — Dams: benefits and problems — Mineral resources: Use and exploitation — Environmental effects of extracting and using mineral resources — Case studies — Food resources: World food problems — Changes caused by agriculture and overgrazing — Effects of modern agriculture: fertilizer—pesticide problems, water logging, salinity — Case studies — Energy resources: Growing energy needs — Renewable and non renewable energy sources — Use of alternate energy sources — Case studies — Land resources: Land as a resource — Land degradation, man induced landslides, soil erosion and desertification — Role of an individual in conservation of natural resources — Equitable use of resources for sustainable lifestyles — Field study of local area to document environmental assets — River / Forest / Grassland / Hill / Mountain. CO₃ ### UNIT IV: SOCIAL ISSUES AND THE ENVIRONMENT 9 From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife protection Act – Forest conservation act – Enforcement machinery involved in environmental legislation – Central and state pollution control boards – National Green Tribunal – Public awareness. CO₄ ### UNIT V: HUMAN POPULATION AND THE ENVIRONMENT 9 Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV / AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies. CO₅ # **TOTAL PERIODS: 45** ### **TEXT BOOKS:** - 1. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014). - 2. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004). - 3. Dr. A. Sheik Mideen and S.Izzat Fathima, "Environmental Science and Engineering", Airwalk Publications, Chennai, (2018). #### **REFERENCE BOOKS:** - 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007). - 2. Erach Bharucha, "Textbook of Environmental Studies", Universities Press (I) Pvt, Ltd, Hydrabad, (2015). - 3. G. Tyler Miller, Scott E. Spoolman, "Environmental Science", Cengage Learning India Pvt.Ltd, Delhi, (2014). - 4. R. Rajagopalan, 'Environmental Studies-From Crisis to Cure', Oxford University Press, (2005). - 5. Anubha Kaushik, C.P. Kaushik, "Perspectives in Environmental Studies", New Age international Pvt. Ltd, New Delhi, (2004). - 6. Frank R. Spellman, "Handbook of Environmental Engineering", CRC Press, (2015). ### **COURSE OUTCOMES** Upon completion of the course, - **CO1** Obtain knowledge about environment, ecosystems and biodiversity. - **CO2** Take measures to control environmental pollution. - **CO3** Gain knowledge about natural resources and energy sources. - Find and implement scientific, technological, economic and political solutions to environmental problems. - CO5 Understand the impact of environment on human population. | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|-----|------|-------|------|------|-------|------|------|------|------|--------|-------------------| | COs | | | | | PROG | RAM (| OUTC | OMES | (POs) | | | | | RAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 2 | 1 | 2 | | CO2 | 3 2 3 3 2 3 3 3 2 2 3 | | | | | | | | | | | | 2 | 2 | 2 | | CO3 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 2 | 1 | 3 | 2 | 2 | 2 | | CO4 | 3 | 3 | 3 | 3 | 1 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | | CO5 | 3 | 2 | 3 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 3 | GE1205 ### **BASIC CIVIL AND MECHANICAL ENGINEERING** L T P C 3 0 3 # **OBJECTIVES:** The objective of this course is to introduce basic knowledge on Civil Engineering Materials, Surveying, Foundations, Civil Engineering Structures, IC Engine, Working Principle of Power Plant, Accessories Of Power Plant, Refrigeration And Air Conditioning System #### UNIT I: SCOPE OF CIVIL AND MECHANICAL ENGINEERING 6 Overview of Civil Engineering - Civil Engineering contributions to the welfare of Society – Specialized sub disciplines in Civil Engineering – Structural, Construction, Geotechnical, Environmental, Transportation and Water Resources Engineering CO1 **Overview of Mechanical Engineering** - Mechanical Engineering contributions to the welfare of Society –Specialized sub disciplines in Mechanical Engineering - Production, Automobile, Energy Engineering - Interdisciplinary concepts in Civil and Mechanical Engineering # UNIT II: SURVEYING AND CIVIL ENGINEERING MATERIALS 9 **Surveying: Objects** – classification – principles – measurements of distances – angles – leveling – determination of areas– contours - examples. CO₂ **Civil Engineering Materials:** Bricks – stones – sand – cement – concrete – steel – timber - modern materials #### UNIT III: BUILDING COMPONENTS AND STRUCTURES 12 Foundations: Types of foundations - Bearing capacity and settlement - Requirement of good foundations. Civil Engineering Structures: Brick masonry - stonemasonry - beams - columns - lintels - roofing flooring - plastering - floor area, carpet area and floor space index - Types of Bridges and Dams - water supply - sources and quality of water - Rain water harvesting - introduction to high way and rail way. CO₃ # UNIT IV: INTERNAL COMBUSTION ENGINES AND POWER PLANTS 12 Classification of Power Plants - Internal combustion engines as automobile power plant – Working principle of Petrol and Diesel Engines – Four stroke and two stroke cycles – Comparison of four stroke and two stroke engines – Working principle of steam, Gas, Diesel, Hydro - electric and Nuclear Power plants — working principle of Boilers, Turbines, Reciprocating Pumps (single acting and double acting) and Centrifugal Pumps. CO4 #### UNIT V: REFRIGERATION AND AIR CONDITIONING SYSTEM Terminology of Refrigeration and Air Conditioning. Principle of vapour compression and absorption system—Layout of typical domestic refrigerator—Window and Split type room Air conditioner. CO5 **TOTAL PERIODS: 45** #### **TEXT BOOKS:** 1. . Shanmugam G and Palanichamy MS , "Basic Civil and Mechanical Engineering", Tata McGraw Hill PublishingCo., NewDelhi, 1996. #### **REFERENCES:** - 1. Palanikumar, K. Basic Mechanical Engineering, ARS Publications, 2010. - 2. Ramamrutham S., "Basic Civil Engineering", Dhanpat Rai Publishing Co.(P) Ltd.1999. - 3. Seetharaman S., "BasicCivil Engineering", Anuradha Agencies, 2005. - 4. ShanthaKumar SRJ., "Basic Mechanical Engineering", Hi-tech Publications, Mayiladuthurai, 2000. - 5. Venugopal K. and Prahu Raja V., "Basic Mechanical Engineering", Anuradha Publishers, Kumbakonam,2000. ### **COURSE OUTCOMES** Upon completion of the course, students will be able - CO1 To impart basic knowledge on Civil and Mechanical Engineering - **CO2** To familiarize the materials and measurements used in Civil Engineering. - CO3 To provide the exposure on the fundamental elements of civil engineering - To enable the students to distinguish the components and working principle of power plant, IC engines - **CO5** To provide the exposure on the fundamental elements of R & AC system. | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|-----|------|-------|------|-------|------|------|------|------|------|---------|------| | COs | | | | | PROG | RAM C | UTCO | MES (| POs) | | | | | GRAM SI | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | - | 3 | 2 | 2 | 3 | 2 | 3 | 2 | | CO2 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | - | 2 | 1 | 1 | 3 | 1 | 2 | 1 | | CO3 | 3 | 2 | 3 | 3 | 2 | 3 | 2 | - | 3 | 2 | 1 | 3 | 1 | 2 | 1 | | CO4 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | - | 3 | 2 | 2 | 3 | 1 | 1 | 1 | | CO5 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | - | 2 | 2 | 1 | 3 | 1 | 2 | 1 | | BT1206 | CELL BIOLOGY | L
3 | T
0 | P
0 | C
3 | |-------------------------------------|--|---------|------------------------|--------|--------| | | TIVES: To provide knowledge
on the fundamentals of cell biology To help students understand the signaling mechanisms | J | Ū | Ū | • | | UNIT I: | CELL STRUCTURE AND FUNCTION OF THE ORGANELLES | | | | 9 | | • | otic, Eukaryotic cells, Sub-cellular organelles and functions. Principles ation membrane proteins, cyto-skeletal proteins. Extra cellular matrix, cell-c | | | | CO1 | | UNIT II: | CELL DIVISION, CANCER, APOPTOSIS AND IMMORTALIZATION | N OF (| CELLS | | 9 | | | cle – Mitosis, Meiosis, Molecules controlling cell cycle, cancer, role of Renesis and apoptosis. Stem cells, Cell culture and immortalization of ions. | | | | CO2 | | UNIT III | : TRANSPORT ACROSS CELL MEMBRANE | | | | 9 | | | and Active Transport, Permeases, Ion channels, ATP pumps. Na+ / K+ / Casymport antiporter system. Ligand gated / voltage gated channels, nists. | | | | CO3 | | UNIT IV | SIGNAL TRANSDUCTION | | | | 9 | | | ors – extracellular signaling, Cell surface / cytosolic receptors and exam of receptors antocrine / paracrine / endocrine models, Secondary messeng | | | | CO4 | | UNIT V | TECHNIQUES USED TO STUDY CELLS | | | | 9 | | | ctionation and flow cytometry, Morphology and identification of cells usin like SEM, TEM and Confocal Microscopy. Localization of proteins in ce | _ | • | | CO5 | | | OOKS: | TO | TAL PE | RIO | DS: 45 | | 1. Lodis
2. Coop
REFER | ch, Harvey etal., "Molecular Cell Biology", 7th Edition, W.H.Freeman, 2005.
Her, G.M. and R.E. Hansman "The Cell: A Molecular Approach", VIIth Edition
ENCES:
ts, Bruce etal., "Molecular Biology of the Cell", IVth Edition, Garland Science | | | | | | COURS | SE OUTCOMES | | | | | | Upon co | ompletion of the course, the students would have | | | | | | CO1 | Deeper understanding of cell at structural and functional level | | | | | | CO2
CO3 | Broad knowledge on the Cell division, and cell culturing methods Deep knowledge on Cell transport mechanism and molecular interaction to | netweer | n celle | | | | CO3 | Clear understanding of the signal transduction, secondary messengers. | GIWEEI | i U U IIIS. | | | | CO5 | Skill on working principles of microscopy and identification of cell types. | | | | | | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|------|------|------|-------|------|--------|------|---|---|---|---|---------|-------------------| | COs | | | | | PROG | RAM C | UTCC | MES (I | POs) | | | | | GRAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | | | | | CO1 | 3 | 1 | - | 2 | 1 | - | | - | - | 1 | - | 2 | 3 | 3 | 2 | | CO2 | 3 | 1 | - | 2 | 1 | - | - | - | - | 1 | - | 2 | 3 | 3 | 2 | | CO3 | 3 | 1 | - | 2 | 1 | - | | - | | 1 | - | 2 | 3 | 3 | 2 | | CO4 | 3 | 1 | - | 2 | 1 | - | - | - | - | 1 | - | 2 | 3 | 3 | 2 | | CO5 | 3 | 1 | - | 2 | 1 | - | - | - | - | 1 | - | 2 | 3 | 3 | 2 | அலகு I மொழி மற்றும் இலக்கியம்: இந்திய மொழிக் குடும்பங்கள் – திராவிட மொழிகள் – தமிழ் ஒரு செம்மொழி – தமிழ் செவ்விலக்கியங்கள் - சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை – சங்க இலக்கியத்தில் பகிர்தல் அறம் – திருக்குறளில் மேலாண்மைக் கருத்துக்கள் – தமிழ்க் காப்பியங்கள், தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம் - பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள் – சிற்றிலக்கியங்கள் – தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி – தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு. #### அலகு II மரபு – பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை – சிற்பக் கலை: நடுகல் முதல் நவீன சிற்பங்கள் வரை – ஐம்பொன் சிலைகள்– பழங்குடியினர் மற்றும் அவர்கள் தயாரிக்கும் கைவினைப் பொருட்கள், பொம்மைகள் – தேர் செய்யும் கலை – சுடுமண் சிற்பங்கள் – நாட்டுப்புறத் தெய்வங்கள் – குமரிமுனையில் திருவள்ளுவர் சிலை – இசைக் கருவிகள் – மிருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் – தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு. அலகு III நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: 3 தெருக்கூத்து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, ஒயிலாட்டம், தோல்பாவைக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், தமிழர்களின் விளையாட்டுகள். அலகு IV தமிழர்களின் இணைக் கோட்பாடுகள்: தமிழகத்தின் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் மற்றும் சங்க இலக்கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள் – தமிழர்கள் போற்றிய அறக்கோட்பாடு – சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் – சங்ககால நகரங்களும் துறை முகங்களும் – சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி. #### அலகு V இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு: இந்திய விடுதலைப்போரில் தமிழர்களின் பங்கு – இந்தியாவின் பிறப்பகுதிகளில் தமிழ்ப் பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் – இந்திய மருத்துவத்தில், சித்த மருத்துவத்தின் பங்கு – கல்வெட்டுகள், கையெழுத்துப்படிகள் - தமிழ்ப் புத்தகங்களின் அச்சு வரலாறு. #### TEXT-CUM-REFERENCE BOOKS - தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்). - 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்). - கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு) - 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு) - Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print) - Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies. - Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies). - The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.) - Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) - Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author) - Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu) - Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) REFERENCE BOOKS **GE 1207** #### **ENGINEERING PRACTICES LABORATORY** LPTC #### **OBJECTIVES** ❖ To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering #### LIST OF EXPERIMENTS # **GROUP A (CIVIL & MECHANICAL)** # I CIVIL ENGINEERING PRACTICE 13 # **Buildings:** (a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects. # **Plumbing Works:** - (a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings. - (b) Study of pipe connections requirements for pumps and turbines. - (c) Preparation of plumbing line sketches for water supply and sewage works. CO1 # (d) Hands-on-exercise: Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components. (e) Demonstration of plumbing requirements of high-rise buildings. # **Carpentry using Power Tools only:** - (a) Study of the joints in roofs, doors, windows and furniture. - (b) Hands-on-exercise: Wood work, joints by sawing, planing and cutting. #### II MECHANICAL ENGINEERING PRACTICE 18 # Welding: - (a) Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding. - (b) Gas welding practice # **Basic Machining:** - (a) Simple Turning and Taper turning - (b) Drilling Practice ### **Sheet Metal Work:** - (a) Forming & Bending: - (b) Model making Trays and funnels. - (c) Different type of joints. CO₂ # Machine assembly practice: - (a) Study of centrifugal pump - (b) Study of air conditioner # **Demonstration on:** - (a) Smithy operations, upsetting, swaging, setting down and bending. Example –Exercise Production of hexagonal headed bolt. - (b) Foundry operations like mould preparation for gear and step cone pulley. - (c) Fitting Exercises Preparation of square fitting and V fitting models. # **GROUP B (ELECTRICAL & ELECTRONICS)** 13 # III ELECTRICAL ENGINEERING PRACTICE - Residential house wiring using switches, fuse, indicator, lamp and energy meter. - 2. Fluorescent lamp wiring. CO₃ 3. Stair case wiring 1. - 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit. - 5. Measurement of energy using single phase energy meter. CO4 6. Measurement of resistance to earth of an electrical equipment. ### IV ELECTRONICS ENGINEERING PRACTICE 16 Study of electronic components and equipment's – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR. CO₅ - Study of logic gates AND, OR, EX-OR and NOT. - 3. Generation of Clock Signal. - 4. Soldering practice Components Devices and Circuits Using general purpose PCB. Measurement of ripple factor of HWR and FWR. **TOTAL: 60 PERIODS** Ouantity ### LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS | S.No. | Description of Equipment | Quantity
required | |-------|--|----------------------| | | CIVIL | | | 1. | Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. | 15 sets | | 2. | Carpentry vice (fitted to work bench) | 15 Nos | | 3. | Standard woodworking tools 15 Sets. | 15 Sets. | | 4. | Models of industrial trusses, door joints, furniture joints | 5 each | | | Power Tools: | | | | (a) Rotary Hammer | | | | (b) Demolition Hammer | | | 5. | (c) Circular Saw | 2 Nos | | | (d) Planer | | | | (e) Hand Drilling Machine | | | | (f) Jigsaw | | | | | | | ĸ | ЛE | \sim 1 | | | 10 | | | |----|-----------------|----------|---|----|----|---|---| | ı١ | / $lacksquare$ | G | 7 | ΝI | IL | А | ட | | 1. | Arc welding transformer with cables and holders. | 5 Nos | |----
--|---------| | 2. | Welding booth with exhaust facility. | 5 Nos | | 3. | Welding accessories like welding shield, chipping hammer, wire brush, etc. | 5 Sets | | 4. | Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. | 2 Nos | | 5. | Centre lathe. | 2 Nos | | 6. | Hearth furnace, anvil and smithy tools. | 2 Sets | | 7. | Moulding table, foundry tools. | 2 Sets | | 8. | Power Tool: Angle Grinder. | 2 Nos | | 9. | Study-purpose items: centrifugal pump, air-conditioner. | 1 each | | | ELECTRICAL | | | 1. | Assorted electrical components for house wiring. | 15 Sets | | 2. | Electrical measuring instruments. | 10 Sets | | 3. | Study purpose items: Iron box, fan and regulator, emergency lamp. | 1 each | | 4. | Megger (250V/500V). | 1 No. | | | Power Tools: | | | 5. | (a) Range Finder | 2 Nos | | | (b) Digital Live-wire detector | | | | ELECTRONICS | | | 1. | Soldering guns 10 Nos. | 10 Nos. | | 2. | Assorted electronic components for making circuits 50 Nos. | 50 Nos. | | 3. | Small PCBs. | 10 Nos. | | 4. | Multimeters | 10 Nos. | | 5. | Study purpose items: Telephone, FM radio, low-voltage power supply | 1 each | # **COURSE OUTCOMES** Upon completion of the course, students will be - **CO1** Able to fabricate carpentry components and pipe connections including plumbing works. - Able to use welding equipment to join the structures, carry out the basic machining operations, and make the models using sheet metal works. - Students will be able to isolate, grow and study the effect of external parameters on the microbial growth in batch culture. Able to illustrate on centrifugal pump, air conditioner, operations of smithy, foundry and fittings. - **CO4** Able to carry out basic home electrical works and appliances, measure the electrical quantities. - **CO5** Able to elaborate on the electronic components and gates, soldering practices. | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|-----|------|-------|------|-------|------|------|------|------|------|------|-------------------| | COs | | | | | PROG | RAM C | UTCO | MES (| POs) | | | | | | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 1 | 3 | | | 3 | 2 | | 1 | 1 | - | 3 | 1 | 1 | 3 | | CO2 | 3 2 3 3 1 - 2 1 - 3 | | | | | | | | | | | | | 2 | 3 | | CO3 | 3 | 1 | 2 | - | - | 2 | 2 | | 1 | 1 | - | 3 | 2 | 1 | 3 | | CO4 | 3 | 2 | 3 | 3 | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 3 | | CO5 | 3 | 2 | 3 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 3 | BT1208 CELL BIOLOGY LAB 0 0 4 2 # **OBJECTIVES:** • To demonstrate various techniques to learn the morphology, identification and propagation ### LIST OF EXPERIMENTS - 1. Introduction to principles of sterile techniques and cell propagation - 2. Principles of microscopy, phase contrast and fluorescent microscopy - 3. Identification of plant, animal and bacterial cells by microscopy - 4. Gram's Staining - 5. Leishman Staining - 6. Giemsa Staining - 7. Thin Layer Chromatography - 8. Separation of Peripheral Blood Mononuclear Cells from blood - 9. Osmosis and Tonicity - 10. Trypan Blue Assay - 11. Staining for different stages of mitosis in Allium Cepa (Onion) **TOTAL PERIODS: 60** # **Equipment Needed for 20 Students** - 1. Hot Air Oven -1 - 2. Incubators -2 - 3. Light Microscopes -4 - 4. Incubator Shaker -1 - 5. Laminar Flow Chamber -2 - 6. Glassware, Chemicals as required #### REFERENCE: 1. Rickwood, D. and J.R. Harris "Cell Biology: Essential Techniques", # **COURSE OUTCOMES** Upon completion of the course, the students will be able **CO1** To understand the basic techniques to work with cells CO2 To demonstrate working principles of Microscopy **CO3** To understand and perform cell staining techniques CO4 To identify the various stages of mitosis | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|-----|------|-------|-------|-------|------|------|------|------|------|---------|-------------------| | COs | | | | | PROG | RAM C | OUTCO | MES (| POs) | | | | | GRAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 1 | - | , | 2 | 2 | , | , | | 1 | | 1 | 1 | 3 | 3 | 2 | | CO2 | 1 | 1 | 1 | 2 | 3 | | 1 | | 1 | - | 1 | - | 3 | 3 | 2 | | CO3 | 1 | 2 | 1 | 1 | 2 | - | 1 | • | 1 | - | 1 | 1 | 3 | 3 | 2 | | CO4 | 1 | 1 | 1 | 1 | 2 | 1 | - | - | 1 | - | 1 | 2 | 3 | 3 | 2 | #### **SEMESTER III** # **MA1301** TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS C **OBJECTIVES:** To introduce the basic concepts of Partial differential equation and to find its solutions. To introduce Fourier series analysis which is vital to many applications in engineering apart from its use in solving boundary value problems. To acquaint the student with Fourier series techniques to solve heat and wave flow problems in engineering. To familiarize the student with Fourier transform techniques used in solving various practical engineering problems. To introduce the effective mathematical tools for the solutions of difference equations that model several physical processes and to develop transform techniques for discrete time systems. UNIT I: PARTIAL DIFFERENTIAL EQUATIONS 12 Formation of partial differential equations – Singular integrals – Solutions of standard types of first order partial differential equations (except $f(x^m z^k p, y^n z^k q) = 0$) – Lagrange's linear equation – CO1 Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types UNIT II: **FOURIER SERIES** 12 Dirichlet's conditions -Necessary and sufficient condition for existence of Fourier series - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series -CO₂ Complex form of Fourier series – Parseval's identity – Harmonic analysis. **UNIT III: APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS** 12 Classification of PDE - Method of separation of variables - Fourier Series Solutions of onedimensional wave equation – One dimensional equation of heat conduction – Steady state solution CO₃ of two dimensional equation of heat conduction. **UNIT IV: FOURIER TRANSFORMS** 12 Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and Cosine transforms Properties – Transforms of simple functions – Convolution theorem – Parseval's identity. CO4 UNIT V: Z - TRANSFORMS AND DIFFERENCE EQUATIONS 12 Z-transforms – Elementary properties – Inverse Z-transform (using partial fraction and residues) – Initial and final value theorems - Convolution theorem - Formation of difference equations -CO₅ Solution of difference equations using Z – transform. **TOTAL PERIODS: 60** #### **TEXT BOOKS:** - 1. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, New Delhi, 2017. - 2. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley, India, 2016. - 3. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 9th Edition, Laxmi Publications Pvt. Ltd, 2014. #### **REFERENCES:** - 1. Dass, H.K., and Er.RajnishVerma, "Higher Engineering Mathematics", S.Chand Private Ltd., 2011. - 2. Peter V.O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012 - 3. James, G., "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012. - 4. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016. - 5. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012 #### **COURSE OUTCOMES** Upon completion of the course, the students will be able to - Understand how to solve the partial differential equations and apply these concepts in the field of engineering. - Learn Fourier series analysis which plays a vital role in the application of electrical engineering, vibration analysis, acoustics, optics, signal and image processing. - Appreciate the physical significance of Fourier series techniques in solving one and twodimensional heat flow problems and one dimensional wave equations and this concept is applied in the fields like elasticity, heat transfer ,quantum mechanics and also extensively in physical phenomenon. - Understand the mathematical principles on transforms and gain the ability to formulate and solve some of the physical problems like designing electrical circuits, signal processing, signal analysis, image processing etc. - Learn to use the effective mathematical tools like Z- transform for the solving difference equations in discrete time signals etc. | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|-----|------|-----|-------|-------|------|------|------|------|------|---------|-------------------| | COs | | | | | PROG | RAM | OUTCO | MES (| POs) | | | | | GRAM SE | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 3 | 2 | 2 | 1 | 1 | 2 | - | 2 | 1 | 2 | - | 3 | 1 | 1 | | CO2 | 3 | 3 | 2 | 2 | 1 | 2 | 1 | - | 1 | - | 2 | - | 2 | 1 | 1 | | CO3 | 3 | 3 | 2 | 2 | - | 1 | - | - | 1 | - | 2 | - | 2 | 1 | 1 | | CO4 | 3 | 2 | 1 | 2 | 1 | - | 1 | 1 | - | - | 3 | - | 1 | 1 | 1 | | CO5 | 3 | 3 | 2 | 2 | 1 | - | 1 | - | 2 | 1 | 2 | - | 1 | - | 1 | # BT1301 **PROCESS CALCULATIONS** 3 **OBJECTIVES:** The course aims to develop skills of the students in the area of Chemical Engineering with emphasis in process calculations and fluid mechanics. This will enable the students to perform calculations pertaining to processes and operations. UNIT I: **BASIC CHEMICAL CALCULATIONS** 9 Dimension - Systems of units esp. engineering FPS, Engineering MKS &
SI systems -Conversion from one system to the other – composition of mixtures and solutions – mass fraction. CO1 mass %, mole fraction, mole %, mass ratios, molarity, molality, normality, ppm, composition by density. UNIT II: **IDEAL AND ACTUAL GAS EQUATIONS** 9 Ideal and actual gas equations, Vander Walls, compressibility factor equations, Application to pure gas & gas mixtures - partial pressures, partial volumes - Air-water vapour systems, Humidity, CO₂ Molar Humidity, Relative Humidity, % Saturation, humid Volume – Humidity chart – wet, Dry bulb, Dew point temperatures, pH of solutions, Vapour pressure. UNIT III: MATERIAL BALANCE WITHOUT CHEMICAL REACTIONS 9 Material balance concept – overall & component – material balance applications for evaporator, gas absorber without reaction, Distillation (Binary system), Liquid extraction, solid-liquid extraction, CO₃ drying, crystallization, Humidification, Reverse Osmosis separation and Mixing Recycle and Bypass illustration **UNIT IV: ENERGY BALANCE** 9 General energy balance equation for open systems, closed system sensible heat calculation. Heat required for phase change thermo chemistry, application of steam tables, Saturated and superheated steam application in bioprocess CO4 #### MATERIAL BALANCE WITH CHEMICAL REACTION UNIT V: 9 Chemical Reaction-Limiting, excess component, Fractional conversion, Percent conversion, Fractional yield in multiple reactions. Simple problems, Combustion Reactions **CO5** **TOTAL PERIODS: 45** # **TEXT BOOKS:** - 1. Bhatt B.I & SB Thakore, Stoichiometry - Fifth edition Tata McGraw Hill 2012 - Geankoplis C.J. "Transport process & Separation process Principles 4th edition-PHI 2006. 2. ### **REFERENCES:** - McCabe W.L & J.C.Sonith & P.Harriot "Unit operations of chemical Engineering" 6thEdn McGraw Hill 2001 - Robert W.Fox, Alan T.McDonald & Philip J.Pritchard "Introduction to FluidMechanics" 6th edn John 2. Wiley & Sons 2003. - 3. Himmelblau D.M "Basic principles & Calculations in Chemical Engineering" 6th edn PHI 2006. ### **COURSE OUTCOMES** Upon completion of the course, the students will be able - CO1 Tosolve problems related to units and conversions and fit the given data using the methodologies - CO2 Toapply their knowledge in the field of biochemical engineering from the principles of thermodynamics - Tosolve problems related to material balance concepts & design reactors for biochemical processes - To solve problems related to energy balance concepts & perform calculations pertaining to processes and operations. - To gain extensive knowledge on Conversion and Percent Yield for single and multiple chemical reactions. | | MAPPING OF COs WITH POS AND PSOS | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|-----|------|--------|-------|-------|------|------|------|------|------|-------------------|------| | COs | | | | | PROC | SRAM (| оитсс | MES (| POs) | | | | | RAM SP
OMES (P | | | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 2 | 1 | 1 | - | - | - | - | - | - | - | - | 1 | 1 | 1 | | CO2 | 3 | 2 | 1 | 1 | 1 | - | - | - | - | - | - | - | 1 | 1 | 1 | | CO3 | 3 | 2 | 2 | 1 | 1 | 1 | - | | , | - | - | - | 1 | 1 | 1 | | CO4 | 3 | 2 | 2 | 1 | 1 | 1 | - | - | - | - | - | - | 1 | 1 | 1 | | CO5 | 3 | 2 | 2 | 1 | 1 | 1 | - | - | - | - | - | - | 1 | 1 | 1 | #### BT1302 #### **BASIC INDUSTRIAL BIOTECHNOLOGY** L T P C 3 0 0 3 #### **OBJECTIVES:** - To make the students aware of the overall industrial bioprocess so as to help them to manipulate the process to the requirement of the industrial needs. - The course prepares the students for the bulk production of commercially important modern Bioproducts, Industrial Enzymes, Products of plant and animal cell cultures ### UNIT I: INTRODUCTION TO INDUSTRIAL BIOPROCESS 9 Introduction to fermentation, Biochemistry of fermentation. Traditional and Modern Biotechnology-A brief survey of organisms, processes, products. Basic concepts of Upstream and Downstream processing in Bioprocess, Process flow sheeting – block diagrams, pictorial representation. CO1 ### UNIT II: PRODUCTION OF PRIMARY METABOLITES 9 Primary Metabolites- Production of commercially important primary metabolites like organic acids, amino acids and alcohols. CO₂ #### UNIT III: PRODUCTION OF SECONDARY METABOLITES Secondary Metabolites- Production processes for various classes of secondary metabolites: Antibiotics, Vitamins and Steroids. CO₃ **UNIT IV:** PRODUCTION OF ENZYMES AND OTHER BIOPRODUCTS 9 9 Production of Industrial Enzymes, Biopesticides, Biofertilizer, Biopreservatives, Biopolymers Biodiesel. Beer, Cheese, SCP & Mushroom culture **CO4** **UNIT V:** PRODUCTION OF MODERN BIOTECHNOLOGY PRODUCTS Production of recombinant proteins having therapeutic and diagnostic applications, vaccines. CO₅ Bioprocess strategies in Plant Cell and Animal Cell culture. **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. Satyanarayana, U. "Biotechnology" Books & Allied (P) Ltd., 2005. - 2. Kumar, H.D. "A Textbook on Biotechnology" IInd Edition. Affiliated East West Press Pvt.Ltd., 1998. 3. Balasubramanian, D. etal., "Concepts in Biotechnology" Universities Press Pvt. Ltd., 2004. - 4. Ratledge, Colin and Bjorn Kristiansen "Basic Biotechnology" IInd Edition Cambridge University Press, 2001. - 5. Dubey, R.C. "A Textbook of Biotechnology" S.Chand & Co. Ltd., 2006 #### REFERENCES: - 1. Casida, L.E. "Industrial Microbiology", New Age International (P) Ltd, 1968. - 2. Presscott, S.C. and Cecil G. Dunn, "Industrial Microbiology", Agrobios (India), 2005. - 3. Cruger, Wulf and Anneliese Crueger, "Biotechnology: A Textbook of Industrial Microbiology", IInd Edition, Panima Publishing, 2000. - 4. Moo-Young, Murrey, "Comprehensive Biotechnology", 4 Vols. Pergamon Press, (Elsevier) 2004. - 5. Stanbury, P.F., A. Whitaker and S.J. Hall "Principles of Fermentation Technology", IInd Edition, Butterworth - Heinemann (an imprint of Elsevier), 1995. - 6. C.F.A Bryce and EL.Mansi, Fermentation microbiology & Biotechnology, 1999. - 7. K.G.Ramawat & Shaily Goyal, Comprehensive Biotechnology, 2009, S.Chand publications. # **COURSE OUTCOMES** Upon completion of the course, - Students will be able to learn, define and understand the basics in industrial bioprocess and to explain the steps involved in the production of bioproducts and methods to improve modern CO1 biotechnology. - Students will be able to measure and manufacture the primary metabolites of commercial importance and apply basic biotechnological principles, methods and models to solve CO₂ biotechnological tasks. - Students will be able to measure, manufacture and formulate the secondary metabolites of CO₃ commercial importance. - Students will be able to isolate, identify, characterize and apply in the production of enzymes and CO4 bioproducts. - Students will be able to estimate, evaluate and express the production of therapeutic and diagnostic CO₅ products and design and deliver useful modern biotechnology products to the Society | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|---|---|---|------|-------|-------|-------|------|---|---|---|---|---------|---| | COs | | | | | PROG | RAM C | OUTCO | MES (| POs) | | | | | GRAM SF | | | | PO1 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 | | | | | | | | | | | | | | | CO1 | 3 - 1 2 1 1 | | | | | | | | | | | | | 1 | 2 | | CO2 | 2 2 1 3 2 1 1 1 2 2 2 | | | | | | | | | | | | | 3 | | | СОЗ | 2 | 2 | 1 | 3 | 2 | 1 | - | - | - | 1 | 1 | 2 | 2 | 2 | 3 | | CO4 | 2 | 2 | 1 | 3 | 3 | 1 | 2 | - | - | 1 | 1 | 2 | 2 | 2 | 3 | | CO5 | 2 | 2 | 2 | 3 | 3 | 2 | | 1 | - | 2 | 1 | 2 | 2 | 2 | 3 | BT1303 MICROBIOLOGY L T P C 3 0 0 3 #### **OBJECTIVES:** - TointroducestudentstotheprinciplesofMicrobiologytoemphasizestructure, multiplication and biochemical aspects of various microbes - To solve the problems in microbial infection and their control - To Apply the knowledge in Industrial and environmental Biotechnology using microorganism # UNIT I: INTRODUCTION 9 Basics of microbial existence; history of microbiology, classification and nomenclature of microorganisms, microscopic examination of microorganisms, light and electron microscopy; principles of different staining techniques like gram staining, acid fast, capsular staining, flagellar staining. CO1 ### UNIT II: MICROBES- STRUCTURE AND MULTIPLICATION 9 Structural organization and multiplication of bacteria, viruses, algae and fungi, with special mention of life history of actinomycetes, yeast, mycoplasma and bacteriophages. CO₂ # UNIT III: MICROBIAL NUTRITION, GROWTHANDMETABOLISM 9 Nutritional requirements of bacteria; different media used for bacterial culture; growth curve and different methods to quantify bacterial growth; aerobic (Glycolysis, Pentose pathway) and anaerobic bioenergetics (TCA cycle and Glyoxylate cycle) and utilization of energy for biosynthesis of important molecules (Synthesis of amino acid, protein, peptidoglycan and nucleotides) CO₃ ### UNIT IV: CONTROL OF MICROORGANISMS 9 Physical and chemical control of microorganisms; host-microbe interactions; anti-bacterial, anti-fungal and anti-viral agents; mode of action and resistance to antibiotics; clinically important microorganisms. CO₄ # UNIT V: INDUSTRIAL AND ENVIRONMENTAL MICROBIOLOGY Primary metabolites; secondary metabolites and their applications; preservation of food; production penicillin, alcohol, vitamin B-12; biogas; bioremediation; leaching of ores by microorganisms; biofertilizers and biopesticides; microorganisms and pollution control; biosensors CO₅ **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - TalaronK, Talaron A, Casita, Pelczar and Reid. Foundations in Microbiology, W.C. Brown Publishers, 1993. - 6. PelczarMJ, Chan ECS and Krein NR, Microbiology, Tata McGraw Hill Edition, New Delhi, India. - 7.
PrescottL.M., Harley J.P., Klein DA, Microbiology, 3rd Edition, Wm. C. Brown Publishers, 1996 ### **COURSE OUTCOMES** Upon completion of the course, - Students will develop skills in the identification and grouping of different microbes using staining and microscopic techniques. - Students will gain the ability to define the structural features of microbes through microscopy by structure and biochemical aspects of various microbes. - CO3 Students will be able to understand the microbial metabolism and nutritional requirements of various microbes. - Students will be able to select a suitable method for the control of microbes and design of antimicrobial agents to prevent microbial infection. - CO5 Students will be able to realize and identify various micro organism for industrial and environmental applications | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | | |-----|----------------------------------|-------------------|-----|-----|------|-----|-------|------|----------------------------------|---|---|---|---|--------|-------------------|--| | COs | | | | | PROG | RAM | OUTCO | OMES | (POs) | | | | | RAM SI | PECIFIC
(PSOs) | | | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 PO10 PO11 PO12 PSO1 PSO2 PSO | | | | | | | | | CO1 | 2 | 2 1 2 2 1 3 2 2 | | | | | | | | | | | | | 2 | | | CO2 | 1 | 1 2 1 2 1 1 3 2 1 | | | | | | | | | | | | | | | | СОЗ | 1 | 1 | 3 | 2 | 2 | 1 | 1 | - | 1 | - | - | 2 | 3 | 2 | 2 | | | CO4 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | - | - | 2 | 3 | 3 | 2 | | | CO5 | 3 | 2 | 3 | 3 | 1 | 1 | 2 | 1 | 2 | - | - | 2 | 3 | 3 | 2 | | # BT1304 **BIOCHEMISTRY - I** C 3 **OBJECTIVES:** To enable the students To know in detail about the elements of atom, charges and their bonding rule. To understand the fundamentals of biomolecules and biochemical process. To understand the reactions of intermediate metabolism and regulations UNIT I: INTRODUCTION TO ORGANIC CHEMISTRY 9 Basic principles of organic chemistry- Atoms, Electrons and Orbitals - Covalent Bonds - Octet rule - Polar covalent Bonds -Electronegativity- formal charges, Isomers-Structural and Stereoisomers. Acids and Bases - Arrhenius and Bronsted Lowry Theories, Lewis acid and base. CO1 Role of carbon, types of functional groups, chemical nature of water, pH and biological buffers-Types of buffers. UNIT II: STRUCTURE AND PROPERTIES OF CARBOHYDRATES 9 Structure, Types and properties of Monosaccharides, Oligosaccharides and Polysaccharides. Chemical reaction of monosaccharides, Isomers- D and L configurations, epimers, anomers. Optical activity of Carbohydrates- Dextro and Levorotatory- Mutarotation. Proteoglycans, CO₂ glucosaminoglycans. mutarotation, glycosidic bond, reducing sugars. Starch, glycogen, cellulose and chitin. Proteoglycans, glycosaminoglycans. Hyaluronic acid, chondroitin sulfate. **UNIT III:** STRUCTURE AND PROPERTIES OF PROTEIN 9 Amino Acids and their types, Peptides, Proteins, measurement, structures, hierarchy of organization primary, secondary, tertiary and quaternary structures, glycoproteins, lipoproteins. CO₃ Determine of primary structure. Strategy of Peptide Synthesis-Merrifield state peptide synthesis - Sequencing of Proteins- Sanger's and Edman's Method. **UNIT IV:** STRUCTURE AND PROPERTIES OF LIPIDS AND NUCLEIC ACIDS 9 Lipids: fatty acids, glycerol-simple lipids: fats, oils and waxes-complex lipids: phospholipids, alycolipids, sphingolipids - derived lipids: steroids, terpenoids and carotenoids - Functions of lipids -saponification, iodination and hydrogenation. CO₄ Nucleic acids: purines, pyrimidines, nucleoside, nucleotide, structure and function of RNA-mRNA, tRNA, rRNA and Watson and Crick structure of DNA. Sangers method of DNA Sequencing. UNIT V: INTERMEDIARY METABOLISM AND REGULATION 9 Glycolysis, TCA cycle, gluconeogenesis, pentose phosphate shunt & glyoxalate shunt. Fatty acid biosynthesis and oxidation, Cholesterol synthesis, Terpenes Biosynthesis. Amino acid **CO5** degradation-deamination, transamination and decarboxylation, urea cycle. Electron transport chain- ATP cycle, calculation of ATP yield during oxidation of glucose and fatty acids. **TOTAL PERIODS: 45 TEXT BOOKS:** - 1. Lehninger Principles of Biochemistry 6th Edition by David L. Nelson, Michael M. Cox - 2. Satyanarayana, U. and U. Chakerapani, "Biochemistry" 3rd Rev. Edition, Books & Allied (P) Ltd., 2006. ### **REFERENCES:** - 1. Berg, Jeremy M. et al. "Biochemsitry", 6th Edition, W.H. Freeman & Co., 2006. - 2. Murray, R.K., etal "Harper's Illustrated Biochemistry", 27th Edition, McGraw-Hill, 2006. - 3. Voet, D. and Voet, J.G., "Biochemistry", 3rd Edition, John Wiley & Sons Inc., 2004. #### **COURSE OUTCOMES** Upon completion of the course, - **CO1** Students will be able to outline the basics of organic chemistry. - CO2 Students will be able to describe the basic structure, types and function of carbohydrates. - CO3 Students will be able to gain extensive knowledge on amino acids and protein. - **CO4** Students will be able to gain extensive knowledge on Lipids and nucleic acids. - Students will be able to gain knowledge in intermediate metabolism and to consolidate the energy yield from different metabolic pathway | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|--|---|---|------|-------|------|-------|------|---|---|---|---|---------|---| | COs | | | | | PROG | RAM O | UTCO | MES (| POs) | | | | | GRAM SE | | | | PO1 | 01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 | | | | | | | | | | | | | | | CO1 | 1 | 2 | - | - | | - | | | - | - | - | 1 | 2 | 2 | - | | CO2 | 1 | 2 | - | - | - | - | - | - | - | - | - | 1 | 2 | 2 | 1 | | CO3 | 1 | 2 | 2 | 1 | 2 | 1 | | | - | - | - | 1 | 2 | 2 | 2 | | CO4 | 1 | 2 | 1 | 1 | 1 | 1 | - | - | - | - | - | 1 | 2 | 2 | 1 | | CO5 | 1 | 2 | - | - | - | - | - | - | - | - | - | 1 | 2 | 2 | - | BT1305 **MOLECULAR BIOLOGY** L T P C 3 0 0 3 # **OBJECTIVES:** - Familiarize students with the cell and molecular biology of both Prokaryotes and Eukaryotes. - This will be needed for any project work in modern biotechnology. - By doing this course students will acquire basic fundamental knowledge and explore skills in molecular biology and become aware of the complexity and harmony of the cells. - This course will emphasize the molecular mechanism of DNA replication, repair,transcription, protein synthesis and gene regulation in various organisms. #### UNIT I: CHEMISTRY OF NUCLEIC ACIDS 9 Introduction to nucleic acids: Nucleic acids as genetic material, Structure and physicochemical properties of elements in DNA and RNA, Biological significance of differences in DNA and RNA. Primary structure of DNA: Chemical and structural qualities of 3',5'-Phosphodiester bond. Secondary Structure of DNA: Watson & Crick model, Chargaff's rule, X–ray diffraction analysis of DNA, Forces stabilizes DNA structure, Conformational variants of double helical DNA, Hogsteen base pairing, Triple helix, Quadruple helix, Reversible denaturation and hyperchromic effect. Tertiary structure of DNA: DNA supercoiling. **CO1** # UNIT II: DNA REPLICATION & REPAIR 9 Overview of Central dogma. Organization of prokaryotic and eukaryotic chromosomes. DNA replication: Meselson& Stahl experiment, bi-directional DNA replication, Okazaki fragments, Proteomics of DNA replication, Fidelity of DNA replication, Inhibitors of DNA replication, Overview of differences in prokaryotic and eukaryotic DNA replication, Telomere replication in eukaryotes. D-loop and rolling circle mode of replication. Mutagens, DNA mutations and their mechanism, various types of repair mechanisms. CO2 #### UNIT III: TRANSCRIPTION 9 Structure and function of mRNA, rRNA and tRNA. Characteristics of promoter and enhancer sequences. RNA synthesis: Initiation, elongation and termination of RNA synthesis, Proteins of RNA synthesis, Fidelity of RNA synthesis, Inhibitors of transcription, Differences in prokaryotic and eukaryotic transcription. Basic concepts in RNA world: Ribozymes, RNA processing: 5'-Capping, Splicing-Alternative splicing, Poly 'A' tail addition and base modification. CO3 #### UNIT IV: TRANSLATION Introduction to Genetic code: Elucidation of genetic code, Codon degeneracy, Wobble hypothesis and its importance, Prokaryotic and eukaryotic ribosomes. Steps in translation: Initiation, Elongation and termination of protein synthesis. Inhibitors of protein synthesis. Posttranslational modifications and its importance. CO4 ### UNIT V: REGULATION OF GENE EXPRESSION ^ Organization of genes in prokaryotic and eukaryotic chromosomes, Hierarchical levels of gene regulation, Prokaryotic gene regulation –lac and trp operon, Regulation of gene expression with reference to λ phage life cycle. CO₅ **TOTAL PERIODS: 45** #### **TEXT BOOKS:** 1. Friefelder, David. "Molecular Biology." Narosa Publications, 1999 - 2. Weaver, Robert F. "Molecular Biology" IInd Edition, Tata McGraw-Hill, 2003. - 3. Karp, Gerald "Cell and Molecular Biology: Concepts and Experiments" IVth Edition, John Wiley, 2005. - 4. Friefelder, David and George M. Malacinski "Essentials of Molecular Biology" IInd Edition, Panima Publishing, 1993. # **REFERENCES:** - 1. Tropp, Burton E. "Molecular Biology: Genes to Proteins". IIIrd Edition. Jones and Bartlett, 2008. - 2. Glick, B.R. and J.J. Pasternak. "Molecular Biotechnology: Principles and Applications of Recombinant DNA" 4th Edition. ASM, 2010. #### COURSE OUTCOMES Upon completion of the course, the students will - **CO1** Understand the basic structure and physicochemical properties of elements in DNA and RNA. - CO2 Understand the Central dogma of life and identify the principle and differences between the DNA replication of prokaryotes and eukaryotes. - Gain knowledge about the mechanism behind prokaryotic and eukaryotic transcription. They also additionally understand the basic concepts in RNA world: Ribozymes and
RNA processing. - Know how to elucidate the genetic code and understand the mechanism and differences between prokaryotes and eukaryotes translation. - **CO5** Gain knowledge about gene organization and mechanism of gene expression in various organisms. | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|---|---|---|-------|-------|------|--------|------|---|---|---|---|-------|-------------------| | COs | | | | | PROGI | RAM C | UTCO | MES (I | POs) | | | | | RAM S | PECIFIC
(PSOs) | | | PO1 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 | | | | | | | | | | | | | | | CO1 | 2 | 2 2 3 1 1 - 1 1 3 | | | | | | | | | | | | | 1 | | CO2 | 1 | 1 1 3 2 2 - 1 1 3 | | | | | | | | | | | | | | | СОЗ | 1 | 1 | 2 | 2 | 3 | - | 1 | - | - | - | - | 1 | 3 | 2 | 1 | | CO4 | 1 | 1 | 2 | 2 | 3 | - | 1 | 2 | - | 1 | - | 1 | 3 | 2 | 1 | | CO5 | 1 | 1 | 2 | 1 | 3 | 2 | 2 | 1 | - | - | - | 1 | 3 | 2 | 1 | LTPC 1001 அலகு I நெசவு மற்றும் பானைத் தொழில்நுட்பம்: 3 சங்க காலத்தில் நெசவுத் தொழில் — பானைத் தொழில்நுட்பம் - கருப்பு சிவப்பு பாண்டங்கள் – பாண்டங்களில் கீறல் குறியீடுகள். அலகு II வடிவமைப்பு மற்றும் கட்டிடக் தொழில்நுட்பம்: 3 சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்தில் வீட்டுப் பொருட்களில் வடிவமைப்பு- சங்க காலத்தில் கட்டுமான பொருட்களும் நடுகல்லும் – சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்லபுரச் சிற்பங்களும், கோவில்களும் – சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நாயக்கர் காலக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள் – பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ-சாரோசெனிக் கட்டிடக் கலை. அலகு III உற்பத்தித் தொழில் நட்பம்: கப்பல் கட்டும் கலை – உலோகவியல் – இரும்புத் தொழிற்சாலை – இரும்பை உருக்குதல், எஃகு – வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் – நாணயங்கள் அச்சடித்தல் – மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி மணிகள் – சடுமண் மணிகள் – சங்கு மணிகள் – எலும்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சிலப்பதிகாரத்தில் மணிகளின் வகைகள். அலகு IV வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில் நுட்பம்: 3 அணை, ஏரி, குளங்கள், மதகு – சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம் – கால்நடை பராமரிப்பு – கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் – வேளாண்மை மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள் – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்றும் முத்துக்குளித்தல் – பெருங்கடல் குறித்த பண்டைய அறிவு – அறிவுசார் சமூகம். அலகு V அறிவியல் தமிழ் மற்றும் கணித்தமிழ்: 3 அறிவியல் தமிழின் வளர்ச்சி –கணித்தமிழ் வளர்ச்சி - தமிழ் நூல்களை மின்பதிப்பு செய்தல் – தமிழ் மென்பொருட்கள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழகம் – தமிழ் மின் நூலகம் – இணையத்தில் தமிழ் அகராதிகள் – சொற்குவைத் திட்டம். **TOTAL: 15 PERIODS** #### TEXT-CUM-REFERENCE BOOKS - தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்). - 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்). - கீழடி வைகை நடுக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு) - 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு) - Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print) - Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies. - Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies). - The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.) - Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) - Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author) - Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu) - Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book. #### BT1307 # **MICROBIOLOGY LABORATORY** L T P C 0 0 4 2 #### **OBJECTIVES:** - To demonstrate various techniques to learn the morphology, identification and propagation of microbes - The course prepares the students to have an idea in growth kinetics and behaviour of organism with antibiotic treatments | Exp No : 1 | Introduction, Laboratory Safety, Use of Equipment; Sterilization Techniques | |------------|---| | Exp No : 2 | Culture Media-Types and Use; Preparation of Nutrient broth and agar | Exp No: 3 Culture Techniques, Isolation and Preservation of Cultures- Broth: flask, test tubes; Solid:Pour plates, streak plates, slants, stabs **Exp No : 4** Microscopy – Working and care of Microscope **Exp No: 5** Microscopic Methods in the Study of Microorganisms., Microscopic identification of yeast/mould **Exp No: 6** Staining Techniques Simple, Differential- Gram's Staining, spore /capsule staining **Exp No: 7** Quantification of Microbes: Sampling and Serial Dilution; Bacterial count in Soil - TVC **Exp No: 8** Effect of Disinfectants- Phenol Coefficient **Exp No : 9** Antibiotic Sensitivity Assay **Exp No : 10** Growth Curve in Bacteria and Yeast **Exp No : 11** Effect of pH, Temperature, UV radiation on Growth Bacteria **TOTAL PERIODS: 60** #### **EQUIPMENT NEEDED FOR 30 STUDENTS** - 1. Autoclave 1. - 2. Hot Air Oven 1. - 3. Incubators 2, - 4. Light Microscopes 4, - 5. Incubator Shaker 1, - 6. Colorimeter 2, - 7. Lamina Flow Chamber 2, - 8. Glassware, Chemicals, Media as required. #### **TEXT BOOKS:** - 1. Cappuccino, J.G. and N. Sherman "Microbiology: A Laboratory Manual", 4th Edition, Addison-Wesley, 1999. - 2. Collee, J.G. etal., "Mackie & McCartney Practical Medical Microbiology" 4th Edition, ChurchillLivingstone, 1996. ### **COURSE OUTCOMES** Upon completion of the course, - **CO1** Students will be able to culture and grow microbes on media. - **CO2** Students will gain knowledge on identification and quantification of microbes. - Students will be able to isolate, grow and study the effect of external parameters on the microbial growth in batch culture. - **CO4** Students will also study the effect of disinfectant and antibiotics on microbes. - **CO5** Students will gain knowledge on radiation impacts on the microbes | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|---|---|---|------|-------|------|-------|------|---|---|---|---|---|-------------------| | COs | | | | | PROG | RAM C | UTCO | MES (| POs) | | | | | | PECIFIC
(PSOs) | | | PO1 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 | | | | | | | | | | | | | | | CO1 | 2 | 2 1 2 2 1 3 2 2 | | | | | | | | | | | | | | | CO2 | 1 | 1 2 1 2 1 1 3 2 | | | | | | | | | | | | | | | CO3 | 1 | 1 | 3 | 2 | 2 | 1 | 1 | - | 1 | - | - | 2 | 3 | 2 | 2 | | CO4 | 2 3 3 3 2 2 2 1 1 2 | | | | | | | | | | | | | 3 | 2 | | CO5 | 3 | 2 | 3 | 3 | 1 | 1 | 2 | 1 | 2 | - | - | 2 | 3 | 3 | 2 | #### BT1308 #### **BIOCHEMISTRY LABORATORY** L T P C #### AIM: • To learn and understand the principles behind the qualitative and quantitative estimation of biomolecules (proteins, carbohydrates, lipids, metabolites etc.,) and laboratory analysis of the same in the body fluids. #### **EXPERIMENTS** - 1. General guidelines for working in biochemistry lab (theory) - 2. Units of volume, weight, density and concentration measurements and their range in biological measurements. Demonstration of proper use of volume and weight measurement devices. - 3. Accuracy, precision, sensitivity and specificity (theory) - 4. Preparation of buffer –titration of a weak acid and a weak base. - 5. Qualitative tests for carbohydrates distinguishing reducing from non-reducing sugars and keto from aldo sugars. - 6. Quantitative method for amino acid estimation using ninhydrin distinguishing amino from imino acid. - 7. Protein estimation by Biuret and Lowry's methods. - 8. Protein estimation by Bradford and spectroscopic methods. - 9. Extraction of lipids and analysis by TLC. - 10. Estimation of nucleic acids by absorbance at 260 nm and hyperchromic effect (demo). - 11. Enzymatic assay: phosphatase from potato. - 12. Enzymatic assay: estimation of glucose by GOD-POD method after hydrolysis of starch with acid and specificity of the enzymatic method. **TOTAL PERIODS: 60** ### **Equipment Needed for 20 Students** - 1. Autocalve-1 - 2. Hot Air Oven -1 - 3. Incubators -2 - 4. Light Microscopes -4 - 5. Incubator Shaker -1 - 6. Colorimeter -2 - 7. Laminar Flow Chamber -2 - 8. Glassware, Chemicals, Media as required #### **TEXT BOOKS** - 1. Practical Biochemistry by R.C. Gupta and S. Bhargavan. - 2. Introduction of Practical Biochemistry by David T. Phummer. (II Edition) #### REFERENCE: - 2. Harpers Biochemistry Ed. R.K. Murray, D.K. Granner, P.A. Mayes and V.W.Rodwell, Appleton and Lange, Stanford, Conneticut. - 3. Textbook of Biochemistry with clinical correlations. Ed. Thomas M. Devlin. Wiley LissPublishers #### **COURSE OUTCOMES** Upon completion of the course, the students will gain knowledge on - The basic guidelines in laboratory and gain knowledge in fundamentals of units, measurements, accuracy and precision - CO2 The basic principles behind the qualitative analysis of carbohydrates and amino acids - **CO3** Extraction and analysis of lipids - CO4 Different biochemical estimation methods of biomolecules and will be able to carry out both qualitative and quantitative analyses of the same. - **CO5** Estimation of enzymatic activity and perform titrations using acids and bases. | | MAPPING OF COs WITH POS AND PSOS | | | | | | | | | | | | | | | |-----|----------------------------------
--|---|---|------|-------|-------|-------|-------|---|---|---|---|--------|-------------------| | COs | | | | | PROG | RAM C | OUTCO | MES (| (POs) | | | | | GRAM S | PECIFIC
(PSOs) | | | PO1 | 01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 | | | | | | | | | | | | | | | CO1 | 2 | 1 1 1 2 2 2 - | | | | | | | | | | | | | | | CO2 | 2 | 2 - 2 1 - 1 2 1 - | | | | | | | | | | | | | | | CO3 | 2 | - | 2 | 1 | - | 1 | - | - | - | - | - | - | 2 | 1 | - | | CO4 | 2 | 2 | 2 | 1 | - | - | - | - | - | - | - | - | 2 | 2 | 1 | | CO5 | 1 | 2 | 1 | 1 | - | - | - | - | - | - | - | - | 2 | 1 | 1 | HS1310 #### PROFESSIONAL SKILLS LABORATORY **L P T C** 0 0 2 1 # **OBJECTIVES** - Enhance the Employability and Career Skills of students - Orient the students towards grooming as a professional - Make them Employable Graduates - Develop their confidence and help them attend interviews successfully. #### LIST OF EXPERIMENTS UNIT I Introduction to Soft Skills- Hard skills & soft skills - employability and career Skills—Grooming as Introduction to Soft Skills- Hard skills & soft skills - employability and career Skills—Grooming as a professional with values—Making an Oral Presentation—Planning and preparing a model presentation; Organizing the presentation to suit the audience and context; Connecting with the audience during presentation; Projecting a positive image while speaking; Emphasis on effective body language-General awareness of Current Affairs. CO₁ | 6 | UNIT II | |----------------|--| | CO2 | Self-Introduction-organizing the material - Introducing oneself to the audience – introducing the topic – answering questions – individual presentation practice— Making a Power Point Presentation Structure and format; Covering elements of an effective presentation; Body language dynamics. Making an Oral Presentation—Planning and preparing a model presentation; Organizing the presentation to suit the audience and context; Connecting with the audience during presentation; Projecting a positive image while speaking; Emphasis on effective body language | | 6 | UNIT III | | CO3 | Introduction to Group Discussion— Participating in group discussions – understanding group dynamics - brainstorming the topic — questioning and clarifying –GD strategies- Structure and dynamics of a GD; Techniques of effective participation in group discussion; Preparing for group discussion; Accepting others' views / ideas; Arguing against others' views or ideas, etc | | 6 | UNIT IV | | CO4 | Basics of public speaking; Preparing for a speech; Features of a good speech; Speaking with a microphone. (Famous speeches may be played as model speeches for learning the art of public speaking). Interview etiquette – dress code – body language – attending job interviews—telephone/skype interview -one to one interview &panel interview –Job Interviews: purpose and process; How to prepare for an interview; Language and style to be used in an interview; Types of interview questions and how to answer them. | | 6 | UNIT V | | CO5 | Recognizing differences between groups and teams- managing time managing stress-
networking professionally- respecting social protocols understanding career management-
developing a long- term career plan making career changes | | PERIODS | TOTAL: 30 | #### LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS One Server 30 Desktop Computers One Hand Mike One LCD Projector #### REFERENCE BOOKS - 1. Butterfield, Jeff Soft Skills for Everyone. Cengage Learning: New Delhi, 2015 - 2. E. Suresh Kumar et al. Communication for Professional Success. Orient Blackswan: Hyderabad, 2015 - 3. Raman, Meenakshi and Sangeeta Sharma. Professional Communication. Oxford University Press: Oxford, 2014 - 4. S. Hariharan et al. Soft Skills. MJP Publishers: Chennai, 2010 - 5. Interact English Lab Manual for Undergraduate Students, Orient BalckSwan: Hyderabad, 2016. ### **COURSE OUTCOMES** Upon completion of the course, the students will be able to - Make effective presentations - CO2 Participate confidently in Group Discussions - **CO3** Attend job interviews and be successful in them. - CO4 Develop adequate Soft Skills required for the workplace - **CO5** Develop their speaking skills to enable them speak fluently in real contexts | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|--|---|---|---|------|-------|-------|--------|-------|---|---|---|------|--------|-------------------| | COs | | | | | PROG | RAM C | OUTCO | OMES (| (POs) | | | | | GRAM S | PECIFIC
(PSOs) | | | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO | | | | | | | | | | | | PSO3 | | | | CO1 | - | 2 | 1 | 2 | 1 | - | 1 | - | 2 | 3 | - | - | 1 | 2 | 1 | | CO2 | - | 2 | 1 | 2 | 1 | - | 1 | - | 2 | 3 | - | - | 1 | 2 | 1 | | CO3 | - | - | - | - | - | - | - | - | 2 | 2 | - | - | - | 2 | 1 | | CO4 | - | - | - | - | - | - | - | - | 2 | 2 | - | 2 | - | 2 | 1 | | CO5 | - | 2 | 1 | 1 | 2 | - | 2 | - | 2 | 3 | - | 2 | 1 | 2 | 1 | #### **IV SEMESTER** #### MA1452 **APPLIED PROBABILITY AND STATISTICS** ### **OBJECTIVES:** - This course aims at providing the required skill to apply the statistical tools in engineering problems. - To introduce the basic concepts of probability and random variables. - To introduce the basic concepts of two dimensional random variables. - To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems. - To introduce the basic concepts of classifications of design of experiments which plays very important roles in the field of agriculture and statistical quality control. #### UNIT I: PROBABILITY AND RANDOM VARIABLES 12 Probability - The axioms of probability - Conditional probability - Baye's theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, CO1 Geometric, Uniform, Exponential and Normal distributions. #### UNIT II: TWO - DIMENSIONAL RANDOM VARIABLES 12 Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Central limit theorem (for independent and identically distributed random variables). CO₂ #### UNIT III: **TESTING OF HYPOTHESIS** 12 Sampling distributions - Estimation of parameters - Statistical hypothesis - Large sample tests based on Normal distribution for single mean and difference of means -Tests based on t, Chisquare and F distributions for mean, variance and proportion - Contingency table (test for independent) – Goodness of fit. CO₃ #### **UNIT IV: DESIGN OF EXPERIMENTS** 12 One way and Two way classifications - Completely randomized design - Randomized block design -Latin square design CO4 #### UNIT V: STATISTICAL QUALITY CONTROL 12 Control charts for measurements (and R charts) – Control charts for attributes (p, c and np charts) -Tolerance limits - Acceptance sampling. CO₅ # **TOTAL PERIODS: 60** # **TEXT BOOKS:** - Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2017. - Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata McGraw Hill, 4th IndianEdition, 2017. #### REFERENCES: - 1. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", CengageLearning,New Delhi, 9th Edition, 2017. - 2. Papoulis, A. and Unnikrishnapillai, S., "Probability, Random Variables and Stochastic Processes", McGraw Hill Education India, 4th Edition, New Delhi, 2017. - 3. Ross, S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 4thEdition, Elsevier, 2009. - 4. Spiegel. M.R., Schiller. J. and Srinivasan, R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 2008. - 5. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineersand Scientists", Pearson Education, Asia, 9th Edition, 2012. ### **COURSE OUTCOMES** Upon completion of the course, the students will be able - Get exposure to random variables and well-founded knowledge of standard distributions which can describe real life phenomena. - **CO2** Get ideas to handle situations involving more than one random variable - Gain the knowledge on Large Samples and Small Samples. These concepts are very useful in biological, economical and social experiments and all kinds of generalizations based on information about a smaller sample and larger samples. Apply the appropriate test in the problems related with sampling. - **CO4** Apply the basic concepts of design of experiments and handle the same. - CO5 Understand the concept of the Control charts to apply in the field of quality assessment, Production processes, to monitor process stability and control of the manufacturing product. | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|---|---|---|------|-----|-------|-------|------|---|---|---|---|--------|-------------------| | COs | | | | | PROG | RAM | OUTCO | MES (| POs) | | | | | RAM SI | PECIFIC
(PSOs) | | | PO1 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 | | | | | | | | | | | | | | | CO1 | 3 | 3 | 2 | 3 | 2 | 1 | - | | | - | 1
 1 | 2 | 2 | 1 | | CO2 | 3 3 2 2 2 1 1 1 | | | | | | | | | | | | 2 | 1 | 1 | | СОЗ | 3 | 3 | 2 | 3 | 3 | 2 | 1 | - | - | - | 2 | 2 | 2 | 2 | 1 | | CO4 | 3 | 3 | 2 | 3 | 2 | 2 | 1 | - | - | - | 1 | 2 | 1 | 2 | 1 | | CO5 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | - | - | - | 2 | 1 | 2 | 2 | 1 | | BT1401 BIOCHEMISTRY-II | L
3 | T
0 | P
0 | C
3 | | | | | | | | | |--|--|---------------------|--------|------------|--|--|--|--|--|--|--|--| | OBJECTIVES: To orient towards the application of knowledge acquired in solving clin To provide a base for molecular modelling and drug designing | nical problems. | | | | | | | | | | | | | UNIT I: METABOLISM OF AMINO ACIDS | | | | 9 | | | | | | | | | | Biosynthesis of Gly, Ser and Cys; Biosynthesis of six essential amino acids (Leu) and regulation of branched chain amino acids (concerted inhibition, all enzyme multiplicity, sequential feedback) from oxaloacetate and pyruvate; Bio amino acids. Metabolic disorders associated with branched chain and degradation. Important molecules derived from amino acids (auxins, DOPA, T3, T4, Adrenaline, Noradrenaline, histamine, GABA, polyamines etc) | losteric regulation a
osynthesis of aroma
aromatic amino a | and
atic
icid | C | D 1 | | | | | | | | | | UNIT II: PROTEIN TRANSPORT AND DEGRADATION | | | | 9 | | | | | | | | | | Protein targeting, signal sequence, secretion; Folding, Chaperons and t proteins, Protein degradation, receptor-mediated endocytosis, turnover. | argeting of organe | elle | C |) 2 | | | | | | | | | | UNIT III: BIOCHEMISTRY OF MUSCLE CONTRACTION | | | | 9 | | | | | | | | | | Contractile proteins, Actin, Myosin, Actin Polymerization, acto-myosin complexes, mechanism of myosin ATPase activity, excitation – contraction coupling nad relaxation, microtubules, microfilaments and their role in organelle movements. | | | | | | | | | | | | | | UNIT IV: VITAMINS AND COENZYMES | | | | 9 | | | | | | | | | | Fat Soluble Vitamins, provitamins (A, D, E and K). Structure, physiology deficiency symptoms. Water soluble vitamins, structure, coenzyme role and Thiamine, riboflavin, pyridoxine, niacin, folic acid, biotin and Vitamin B12. Fintake. Coenzymes: Their role in metabolic pathways. NAD, FAD, TPP, PLP, | deficiency symptor
Recommended diet | ns. | C | D 4 | | | | | | | | | | UNIT V: HORMONES | | | | 9 | | | | | | | | | | Introduction. Effects of Hormones. Chemical classification of hormone vasopressin, protein hormone- insulin. Lipid and phospholipid derived hormone phospholipids. Steroid hormones-testosterone, estrogen, cortisol. Moradrenaline. Mechanism of action of the different classes of hormones. | nes prostaglandin a | and | C | D 5 | | | | | | | | | | TEXT BOOKS: | TOTAL PI | ERIC | DS: | 45 | | | | | | | | | | Nelson, D.L et al., "Lehninger's Principles of Biochemistry" Stryer, Lub 2. "Biochemistry".IVth Edition, W.H Freeman & Co., 2000. Voet, D.J and J.G. Voet and C.W. Pratt "Principles of Biochemistry" III Inc., 2008. Murray, R.K., et al., "Harper's Illustrated Biochemistry". XXVIIth Edition | rd Edition, John Wi | • | k Sor | าร | | | | | | | | | 1. Creighton. T.E., "Proteins: Structure and Molecular Properties" IInd Edition, W.H. Freeman and 2. Salway, J.G., "Metabolism at a Glance". IInd Edition, Blackwell Science Ltd., 2000. REFERENCE: Co.,1993. ### **COURSE OUTCOMES** Upon completion of the course, | CO1 St | ıdent will | gain know | ledae or | the rea | ction invol | ve in | amino | acid synthe | eise | |--------|------------|-----------|----------|---------|-------------|-------|-------|-------------|------| |--------|------------|-----------|----------|---------|-------------|-------|-------|-------------|------| CO2 Students will have knowledge on protein transport and degradation CO3 Students will gain knowledge in biochemistry of muscle contraction CO4 Student will gain knowledge on the role of vitamins and co-enzymes in metabolic pathway **CO5** Students will gain knowledge on biomembranes, transport and electrical conductivity. | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | | |----------------------------------|-----|-----|-----|----------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | COs | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 1 | 2 | - | - | - | - | - | - | - | - | - | 1 | 2 | 2 | - | | CO2 | 1 | 2 | • | • | - | • | - | - | - | - | 1 | 1 | 2 | 2 | - | | CO3 | 1 | 2 | • | 1 | - | • | - | - | - | - | 1 | 1 | 2 | 2 | - | | CO4 | 1 | 2 | • | - | - | • | - | - | - | - | - | 1 | 2 | 2 | - | | CO5 | 1 | 2 | - | 1 | - | - | - | - | - | - | - | 1 | 2 | 2 | - | BT1402 ENZYME ENGINEERING L T P C 3 0 0 3 ### **OBJECTIVES:** To enable the students - To learn enzyme reactions and its characteristics along with the production and purification process - To give the student a basic knowledge concerning biotransformation reactions with the usage of enzymes #### UNIT I: INTRODUCTION TO ENZYMES 9 Classification of enzymes. Mechanisms of enzyme action; concept of active site and energetics of enzyme substrate complex formation; specificity of enzyme action; principles of catalysis – collision theory, transition state theory; role of entropy in catalysis. CO1 # UNIT II: KINETICS OF ENZYME ACTION 9 Kinetics of single substrate reactions; estimation of Michelis – Menten parameters, multisubstrate reactions - mechanisms and kinetics; turnover number; types of inhibition & models –substrate, product. Allosteric regulation of enzymes, Monod Changeux Wyman model, pH and temperature effect on enzymes & deactivation kinetics. CO2 # UNIT III: ENZYME IMMOBILIZATION AND BIOSENSORS 9 Physical and chemical techniques for enzyme immobilization – adsorption, matrix entrapment, encapsulation, cross-linking, covalent binding etc., - examples, advantages and disadvantages, design of enzyme electrodes and their application as biosensors in industry, healthcare and environment. CO3 UNIT IV: PURIFICATION AND CHARACTERIZATION OF ENZYMES FROM NATURAL SOURCES 9 Production and purification of crude enzyme extracts from plant, animal and microbial sources; methods of characterization of enzymes; development of enzymatic assays. CO4 UNIT V: INDUSTRIAL APPLICATIONS OF ENZYMES 9 Enzymes in organic synthesis – Enzymes for food, pharmaceutical, tannery, textile, paper and pulp industries – Enzyme for environmental applications- Enzymes for analytical and diagnostic **CO5** applications – Enzymes for molecular biology research. **TOTAL PERIODS: 45** # **TEXT BOOKS:** - 1. Trevor Palmer, Enzymes IInd Horwood Publishing Ltd - 2. Faber K ,Biotransformations in Organic Chemistry, IV edition , Springer #### **REFERENCES:** - 1. Harvey W. Blanch, Douglas S. Clark, Biochemical Engineering, Marcel Dekker, Inc. - 2. James M. Lee, Biochemical Engineering, PHI, USA. - 3. James. E. Bailey & David F. Ollis, Biochemical Engineering Fundamentals, McGraw Hill. - 4. Wiseman, Enzyme Biotechnology, Ellis Horwood Pub. #### **COURSE OUTCOMES** Upon completion of the course, the students will be able - To gain knowledge on enzyme and enzyme reactions which will be the key step to proceed towards various concepts in biotechnology - To understand theoretical and practical aspects of kinetics which will deliver the importance and utility of enzyme kinetics towards research. - To know the process of immobilization which enables them to apply its techniques in food, pharmaceutical and chemical industries. - To technologically work on processing, production and purification of enzymes at an industrial scale. - To receive theoretical knowledge on biotransformation and industrial, health care and research application of enzymes. | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | | |----------------------------------|-----|-----|-----|----------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | COs | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 1 | 1 | 2 | 2 | | - | | - | | - | - | 1 | 3 | 3 | 1 | | CO2 | 2 | 2 | 3 | 3 | 3 | 1 | 1 | - | , | - | - | 1 | 3 | 3 | 3 | | СОЗ | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | - | - | - | 1 | 3 | 3 | 1 | | CO4 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | - | - | - | 1 | 3 | 3 | 3 | | CO5 | 1 | 1 | 3 | 3 | 3 | 2 | 2 | 2 | - | - | - | 1 | 3 | 3 | 3 | BT1403 #### FLUID MECHANICS AND HEAT TRANSFER OPERATIONS 3 0 0 3 ### **OBJECTIVES:** - To introduce the students to the mechanics of fluids through a thorough understanding of the properties of the fluids, behaviour of fluids under static conditions. - The dynamics of fluids is introduced through the control volume approach which gives an integrated understanding of the transport of mass, momentum and energy and flow measurements. - To enable the students to understand the fundamental principles and concepts of heat transfer by conduction, convection and radiation. - The course will develop skills in the design and application of heat exchangers. - This course will be a prerequisite for certain engineering subjects offered in the subsequent semesters. #### UNIT I: FLUID PROPERTIES & FLUID MECHANICS 9 Fluid definition- compressible,
in compressible fluids – coefficient of isothermal compressibility, Density, specific gravity, specific weight, surface tension, vapour pressure, viscosity. Newtonian and Non-newtonian fluids. Fluid statics – Barometric equation – application for incompressible and compressible fluids. Pressure changes in atmospheric air – Gauge and absolute pressure – pressure measurement with Bourdon gauge & manometers. Fluid Dynamics – equation of continuity – Bernoulli's equation – pressure loss in straight pipes – in fittings – expansion and contraction losses (applied to Newtonian Fluids only) Fluid flow measurement, Orifice, venturimeter & Rotameter for Newtonian fluids. CO1 #### UNIT II: FLOW OF FLUID THROUGH PACKINGS 9 Fluidization, Fluid transport -Industrial application of fluid flow through packing-characteristics of packed bed-Bed surface area-void fraction-Laminar flow and turbulent flow through packed bed - pressure drop experienced by the fluid-equations and application problems. Fluidization phenomena-Industrial application - minimum fluidization velocities. Industrial pipes and fittingsFluid moving machinery-pumps centrifugal, Reciprocating-gear, Peristaltic pumps, Introduction togas moving machinery-Fans, blowers, compressors. CO₂ # UNIT III: CONDUCTION HEAT TRANSFER 9 Heat transfer phenomena-thermodynamics & heat transfer. Heat conduction – Fourier's equation – steady state conduction in planar and radial systems – Resistance concept – series and–and parallel resistances in conduction – unsteady state conduction – lumped capacity model – extended surfaces (Fins) –combined conduction & convection – 2 dimensional conduction. CO3 # UNIT IV: CONVECTION HEAT TRANSFER 9 Forced and natural convection – Dimensional analysis- Dimensional numbers- Convection heat transfer coefficient- Correlations for flow over plate, through tubes, over spheres and cylinders-Agitated systems- Packed columns- condensation phenomena- Film and drop wise condensation over tubes- Boiling phenomena- heat transfer coefficient. CO4 # UNIT V: RADIATION HEAT TRANSFER AND HEAT TRANNSFER EQUIPMENTS 9 Electromagnetic waves- energy of radiation- Planck's equation-Blackbody- Radiation exchange. Kirchhoff's law, Stefan Boltzmann equation of radiant energy – Wien's law- Radiation exchange between surfaces – black- gray bodies- view factors-sample problems. Concept of overall heat transfer coefficient- Heat exchangers- types, boilers- Kettles- Heat exchanger Design concept-NTU concept. CO5 # **TOTAL PERIODS: 45** # **TEXT BOOKS:** - 1. Geamkoplis. C.J "Transport Process & separation Process Principles" IVth Edition Prentice Hall of India, 2005. - 2.Heat & Mass Transfer by P. K. Nag, Tata McGraw Hill IIIrd Edition 2003 # **REFERENCES:** 1. Principles of Heat Transfer Frank Kreith, Raj M. ManglikVIIth edition Cenage Learning Inc Mark S. Bohn #### **COURSE OUTCOMES** Upon completion of the course, the students will gain knowledge on - The basic understanding of the properties and behaviour of fluids, static and dynamic equilibrium. - **CO2** The dynamics of fluids and integrated understanding of transport of mass, momentum and energy. - The process of Heat transfer through different bodies by means of conduction, convection and radiation. - The concept of heat flow over surfaces by natural and forced convection, phenomena of boiling and condensation heat transfer, estimation of heat transfer coefficient. - The basic laws, concept and mechanism of thermal radiation, types of heat exchangers and the design of heat exchangers for various bioprocesses. | | | | | | MA | APPING | G OF C | Os WI | TH PO | s AND F | PSOs | | | | | |-----|-----|-----|-----|-----|------|--------|--------|-------|-------|---------|------|------|------|---------|-------------------| | COs | | | | | PROG | RAM | OUTCO | MES (| POs) | | | | | GRAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 2 | 2 | • | 1 | 1 | 1 | • | - | | - | 1 | 2 | 2 | 1 | - | | CO2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | | | 1 | 2 | 2 | 2 | 1 | 1 | | CO3 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | - | 2 | 1 | 2 | 1 | | CO4 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | - | 1 | 1 | | CO5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | - | 2 | 2 | # **BIOPROCESS PRINCIPLES** L T P C 3 0 0 3 #### **OBJECTIVES:** - To impart knowledge on design and operation of fermentation processes with all its prerequisites. - To endow the students with the basics of microbial kinetics, metabolic Stoichiometry and energetics. # UNIT I: OVERVIEW OF FERMENTATION PROCESSES · 9 Overview of fermentation industry, general requirements of fermentation processes, basic configuration of fermentor (CSTR) and ancillaries, main parameters to be monitored and controlled in fermentation processes # UNIT II: RAW MATERIALS AND MEDIA DESIGN FOR FERMENTATION PROCESS Criteria for good medium, medium requirements for fermentation processes, carbon, nitrogen, minerals, vitamins and other complex nutrients, oxygen requirements, medium formulation of optimal growth and product formation, examples of simple and complex media, design of various commercial media for industrial fermentations – medium optimization methods CO2 #### UNIT III: STERILIZATION KINETICS 9 Thermal death kinetics of microorganisms, batch and continuous heat sterilization of liquid media, filter sterilization of liquid media, air sterilization and design of sterilization equipment - batch and continuous. CO3 # UNIT IV: METABOLIC STOICHIOMETRY AND ENERGETICS 9 Stoichiometry of cell growth and product formation, elemental balances, degrees of reduction of substrate and biomass, available electron balances, yield coefficients of biomass and product formation, maintenance coefficients energetic analysis of microbial growth and product formation, oxygen consumption and heat evolution in aerobic cultures, thermodynamic efficiency of growth. CO4 # UNIT V: KINETICS OF MICROBIAL GROWTH AND PRODUCT FORMATION CO5 Batch cultivation and continuous cultivation. Simple unstructured models for microbial growth, Monod model, product formation kinetics - Leudeking- Piret models, substrate and product inhibition on cell growth and product formation. Biomass estimation – Direct and Indirect methods. **TOTAL PERIODS: 45** # **TEXT BOOKS:** - 1. Shuler, Michael L. and Fikret Kargi, "Bioprocess Engineering", Prentice Hall, 1992. - 2. Doran, Pauline "of Bioprocess Engineering Principles ". Elsevier, 1995 - 3. Peter F. Stanbury, Stephen J. Hall & A. Whitaker, Principles of Fermentation Technology, Science & Technology Books. #### **REFERENCES:** - 1. Lydersen, Bjorn K. "Bioprocess Engineering Systems, Equipment and Facilities" John Wiley, 1994. - 2. Bailey, James E. and David F. Ollis, "Biochemical Engineering Fundamentals", IInd Edition. McGraw Hill , 1986. - 3. Harvey W. Blanch, Douglas S. Clark, Biochemical Engineering, Marcel Dekker, Inc. #### **COURSE OUTCOMES** Upon completion of the course, the students will - CO1 Understand about the assembly and functioning of Bioreactors and its utilities - Gain knowledge on media components, perform scientific media design and optimize its concentrations - **CO3** Analyze the various sterilization methods and its Kinetics and solve the problems associated with it. - CO4 Understand the concepts of Metabolic stoichiometry, Energetics of cell growth and product formation - **CO5** Gain knowledge on kinetics of Microbial growth and Product formation | | | | | | MA | APPING | G OF C | Os WI | TH PO | s AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|--------|--------|-------|-------|---------|------|------|------|--------|------| | COs | | | | | PROG | RAM C | OUTCO | MES (| POs) | | | | | RAM SF | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 2 | 2 | - | 2 | - | - | - | - | - | - | 1 | 3 | 2 | 2 | | CO2 | 1 | 1 | 3 | 3 | 2 | - | 1 | - | - | - | - | 1 | 1 | 3 | 2 | | CO3 | 2 | 3 | 3 | 3 | 2 | - | - | - | - | - | - | - | 1 | 3 | 2 | | CO4 | 1 | 2 | 2 | 3 | 1 | - | - | - | - | - | - | - | 1 | 3 | 1 | | CO5 | 1 | 2 | 3 | 2 | 2 | - | - | - | - | - | - | - | 1 | 3 | 1 | | BT1405 | APPLIED THERMODYNAMICS FOR BIOTECHNOLOGISTS | L
3 | T
0 | P
0 | C
3 | |---|--|-------------|--------|--------|--------| | OBJECTIVES: • To enable | the students to learn about basic concepts of classical and statistical t | | Ţ. | | | | UNIT I: | THERMODYNAMIC LAW AND PROPERTIES OF FLUIDS | | • | | 9 | | properties of fluids | odynamics, a generalized balance equation and conserved quantities, of exhibiting non ideal behavior; residual properties; estimation of therm equations of state; calculations involving actual property exchanges; ications. | nodyn | namic | С | O1 | | UNIT II: | SOLUTION THERMODYNAMICS | | | | 9 | | | erties; concepts of chemical potential and fugacity; ideal and non-ideal ications of excess properties of mixtures; activity coefficient; composition. | | | | O2 | | UNIT III: | PHASE EQUILIBRIA | | | | 9 | | Criteria for phase equilibria and solid | equilibria; VLE calculations for binary and multi component systems; lid-solid equilibria. | quid- | liquid | С | O3 | | UNIT IV: | CHEMICAL REACTION EQUILIBRIA | | | | 9 | | of temperature an | a for homogeneous chemical reactions; evaluation of equilibrium const
d pressure on equilibrium constant; calculation of equilibrium conversion
and multiple reactions. | - | | С | :04 | | UNIT V: | THERMODYNAMIC DESCRIPTION OF MICROBIAL GROWTH A PRODUCT FORMATION | ND | | | 9 | | of the Operational | of microbial growth stoichiometry thermodynamics of maintenance, Ca
Stoichiometry of a growth
process at Different growth rates, Including
–Pirt Relation for Electron Donor, thermodynamics and stoichiometry of | Heat | | С | :05 | | TEVT DOOKS. | то |)TAL | . PER | IODS | : 45 | | TEXT BOOKS: 1. Smith J.M., Var Edition, Tata McG | n Ness H.C., and Abbot M.M. "Introduction to Chemical Engineering T | herm | ıodyna | amics | s", VI | - Edition. Tata McGraw-Hill, 2003. - Narayanan K.V. "A Text Book of Chemical Engineering Thermodynamics", PHI, 2003. Christiana D. Smolke, "The Metabolic Pathway Engineering Handbook Fundamentals", CRC Press Taylor & Francis Group, 2010. # **REFERENCES:** 1. Sandler S.I. "Chemical and Engineering Thermodynamics", John Wiley, 1989. # **COURSE OUTCOMES** Upon completion of the course, the students will - **CO1** Explain the theoretical concepts of thermodynamics and how it applies to energy conversion in technological applications and biological systems. - CO2 Demonstrate the capability to analyze the energy conversion performance in a variety of modern applications in biological systems. - CO3 Design and carry out bioprocess engineering experiments, and analyze and interpret fundamental data to do the design and operation of bioprocesses. - CO4 Describe the criteria when two phases coexist in equilibrium and the vapour liquid equilibrium calculations microbial growth and product formation. - **CO5** Apply their knowledge in the field of biochemical engineering from the principles of thermodynamics. | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|-----|------|------|-------|--------|-----|------|------|------|------|--------|------| | COs | | | | Р | ROGR | AM O | JTCOM | MES (P | Os) | | | | | RAM SP | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 2 | - | 2 | 1 | 1 | - | - | - | - | - | - | 1 | 1 | - | | CO2 | 2 | 2 | • | 3 | 1 | 1 | • | • | - | - | - | - | 1 | - | - | | CO3 | 2 | 2 | • | 3 | 1 | 1 | • | - | - | - | - | • | 1 | 2 | - | | CO4 | 2 | 2 | • | 1 | 1 | 2 | • | • | - | - | - | - | 1 | 2 | - | | CO5 | 2 | 2 | - | 3 | 1 | 3 | 1 | - | - | | - | - | - | 1 | 2 | #### BT1407 #### CHEMICAL ENGINEERING LAB L T P C 0 0 4 2 #### **OBJECTIVES:** - To provide basic understanding of chemical engineering principles and operations - To course will enable the students to apply the principles in other chemical engineering and biotechnology subjects offered in higher semesters #### LIST OF EXPERIMENTS - 1.Flow measurement Orifice meter - 2. Flow measurement Venturimeter, - 3. Flow measurement Rotameter - 4. Pressure drop in flow through pipes - 5. Pressure drop in flow through packed column - 6. Pressure drop in flow through fluidized beds - 7. Characteristics of centrifuge pump - 8. Filtration through plate and frame filter press - 9. Filtration in leaf filter - 10. Simple and steam distillation - 11. Adsorption phenomenon - 12. Drying characteristics **TOTAL PERIODS: 60** # **COURSE OUTCOMES** Upon completion of the course, the students will gain knowledge on - **CO1** To have knowledge on the basic principles of chemical engineering. - To apply the skill of material balance and energy balance in unit operations and unit process of chemical engineering and biotechnology. - To analyze the principles of chemical engineering and its applications in chemical, mechanical and biological perspectives. - To understand and analyze the mass transfer process and apply its knowledge in an industrial perspective. - To understand the design and working principles of fluid moving machinery and transport phenomena | | | | | | M | APPING | G OF C | Os WI | TH PO | s AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|--------|--------|--------|-------|---------|------|------|------|---------|------| | COs | | | | | PROG | RAM C | UTCO | MES (I | POs) | | | | | GRAM SI | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 2 | 1 | 1 | 1 | 1 | 1 | | - | - | - | | - | 1 | 2 | 1 | | CO2 | 2 | 2 | 2 | 2 | 1 | 1 | - | - | - | - | - | - | 1 | 2 | 1 | | СОЗ | 2 | 2 | 2 | 2 | 1 | 1 | - | - | - | - | - | - | 1 | 2 | 1 | | CO4 | 2 | 2 | 2 | 2 | 1 | 1 | - | - | - | - | - | - | 1 | 2 | 1 | | CO5 | 2 | 2 | 2 | 2 | 1 | 1 | - | - | - | - | - | - | 1 | 2 | 1 | BT1408 # MOLECULAR BIOLOGY LABORATORY L T P C 0 0 4 2 #### **OBJECTIVES:** - Provide hands-on experience in performing basic molecular biology techniques. - Introduce students to the theory behind in each technique and to describe common applications of each methodology in biological research. This will facilitate the students to take up specialized project in Molecular biology and will be a pre-requisite for research work # LIST OF EXPERIMENTS - 1. Electrophoresis _-Agarose and Polyacrylamide Gel - 2. Isolation of microbial DNA - 3. Isolation of genomic DNA - 4. Quantification of DNA (UV/ Vis) and analysis of purity - 5. Restriction enzyme digestion& Ligation - 6. Competent cells preparation & Transformation - 8. Selection of recombinants Antibiotic sensitivity assay - 9. Plating of λ phage - 10. Lambda phage lysis of liquid cultures # Requirements: # **Equipment Needed for 30 Students** - 1. Electrophoresis Kit 1 - 2. PCR 1 - 3. Incubators 2 - 4. Light Microscopes 4 - 5. Incubator Shaker 1 - 6. Spectrophotometer 2 - 7. Laminar Flow Chamber 2 - 8. Glassware, Chemicals, Media as required **TOTAL PERIODS: 60** # **REFERENCES:** 1. Sambrook, Joseph and David W. Russell "The Condensed Protocols: From Molecular Cloning: A Laboratory Manual" Cold Spring Harbor, 2006. # **COURSE OUTCOMES** Upon completion of the course, - Students will be aware of the hazardous chemicals and safety precautions in case of emergency. - **CO2** Students will learn to isolate nucleic acids from biological samples. - Demonstrate knowledge and understanding of the principles underpinning important - techniques in molecular biology. | | | | | | MA | PPING | OF C | Os WIT | H POs | AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|-------|------|--------|-------|-------|------|------|------|---------|------| | COs | | | | | PROG | RAM C | UTCO | MES (| POs) | | | | | GRAM SF | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | 3 | | | - | 2 | 2 | 3 | - | 3 | - | - | 3 | - | - | | CO2 | 2 | 3 | | 3 | 2 | - | | | - | - | - | - | 3 | 3 | 2 | | CO3 | 2 | 3 | 1 | 3 | 2 | - | - | - | - | - | - | - | 3 | 3 | 3 | #### **V SEMESTER** # BT1501 MASS TRANSFER OPERATIONS L T P C 3 0 0 3 # **OBJECTIVES:** - To define the principles of adsorption, absorption, leaching and drying extraction, distillation crystallization operations. - To begin the concept of membrane separation process and develop skills of the students in the area of mass transfer operations with emphasis on separation and purification of products. | UNIT I: | DIFFUSION AND MASS TRANSFER | 9 | |---------|--------------------------------------|---| | OINI I. | DII I GOIGII AIID IIIAGG I MAIIGI EN | • | Molecular diffusion in fluids and solids; Interphase Mass Transfer; Mass Transfer coefficients; Analogies in Transport Phenomenon. # UNIT II: GAS LIQUID OPERATIONS 9 Principles of gas absorption; Single and Multi component absorption; Absorption with Chemical Reaction; Design principles of absorbers; Industrial absorbers; HTU, NTU concepts. # UNIT III: VAPOUR LIQUID OPERATIONS 9 V-L Equilibria; Simple, Steam and Flash Distillation; Continuous distillation; McCABE-THIELE & PONCHON-SAVARIT Principles; Industrial distillation equipments, HETP, HTU and NTU concepts. # UNIT IV: EXTRACTION OPERATIONS 9 L-L equilibria, Staged and continuous extraction, Solid-liquid equilibria, Leaching Principles. # UNIT V: SOLID FLUID OPERATIONS Adsorption equilibria – Batch and fixed bed adsorption-Drying-Mechanism-Drying curves- Time of Drying; Batch and continuous dryers. **TOTAL PERIODS: 45** # **TEXT BOOKS:** - 1. Treybal R.E. Mass Transfer Operations. IIIrd edition. Mcgraw Hill, 1981. - 2. Geankoplis C.J. Transport Processes and Unit Operations. IIIrd edition, Prentice Hall of India, 2002. #### **REFERENCES:** 1. Coulson and Richardson's Chemical Engineering. Vol I & II, Asian Books Pvt Ltd, 1998. #### **COURSE OUTCOMES** Upon completion of the course, the students will gain knowledge on - **CO1** Gas -liquid, vapour- liquid and solid- liquid and liquid–liquid equilibrium. - Classify and use the accurate engineering correlations of diffusion and mass transfer coefficients to model a separation process. - lnvestigate multi-stage equilibrium separation processes, simultaneous phase equilibrium and mass balances in continuous separation processes - CO4 Design and understand operating principles of extraction and leaching - CO5 Design and construction with operating principles of process economics of separating equipments (Dryers and Adsorbers) 80 | | | | | | MA | PPING | OF C | Os WIT | TH POs | S AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|-------|------|--------|--------|---------|------|------|------|---------|------| | COs | | | | | PROG | RAM C | OOTU | MES (I | POs) | | | | | GRAM SE | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 2 | 3 | 2 | 1 | - | - | - | - | - | - | - | 2 | 2 | 2 | | CO2 | 2 | 2 | 3 | 2 | 1 | - | - | - | - | - | - | - | 2 | 2 | 3 | | CO3 | 3 | 2 | 3 | 2 | - | - | - | - | - | - | - | - | 2 | 3 | 3 | | CO4 | 2 | 2 | 3 | 2 | 1 | 1 | - | - | - | - | - | - | 3 | 3 | 3 | | CO5 | 3 | 2 | 2 | 3 | 1 | - | - | - | - | - | - | - | 3 | 3 | 3 | # **BIOPROCESS ENGINEERING** L T P C 3 0 0 3 **OBJECTIVES:** The course will enable the students - To impart knowledge about bioreactor configuration and their application in processes. - To understand the regime analysis of bioprocesses in reactor design. - To learn about kinetics and applications of immobilised systems. - To
develop skills in modelling and simulation of bioprocessses. - To understand the requirements of recombinant cell cultivation and bioreactor considerations. # UNIT - I CONFIGURATION OF BIOREACTORS 9 Ideal reactors and its characteristics, Fed batch cultivation, Cell recycle cultivation, Cell recycle cultivation in waste water treatment, two stage cultivation, Packed bed reactor, airlift reactor, introduction to fluidized bed reactor, bubble column reactors. CO1 #### UNIT - II BIOREACTOR SCALE – UP 9 Regime analysis of bioreactor processes, oxygen mass transfer in bioreactors – microbial oxygen demands; methods for the determination of mass transfer coefficients; mass transfer correlations. Scale up criteria for bioreactors based on oxygen transfer, power consumption and impeller tip speed. CO₂ #### UNIT - III BIOREACTOR CONSIDERATION IN ENZYME SYSTEMS 9 Analysis of film and pore diffusion effects on kinetics of immobilized enzyme reactions; formulation of dimensionless groups and calculation of effectiveness factors. Design of immobilized enzyme reactors – packed bed, fluidized bed and membrane reactors CO3 # UNIT - IV MODELLING AND SIMULATION OF BIOPROCESSES 9 Study of structured models for analysis of various bioprocess – compartmental models, models of cellular energetics and metabolism, single cell models, plasmid replication and plasmid stability model. Dynamic simulation of batch, fed batch, steady and transient culture metabolism. CO4 #### UNIT V RECOMBINANT CELL CULTIVATION Different host vector system for recombinant cell cultivation strategies and advantages. E.coli, yeast Pichiapastoris / Saccharomyces cereviseae, Animal cell cultivation, plant cell cultivation, Insect cell cultivation. High cell density cultivation, process strategies, reactor considerations in the above system CO₅ 9 **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. Michael L. Shuler and FikretKargi, Bioprocess Engineering, Basic Concept, 2nd Edition Prentice Hall PTR, 2002. - 2. Pauline Doran, Bioprocess Engineering Calculation, Blackwell Scientific Publications - 3. Harvey W. Blanch, Douglas S. Clark, Biochemical Engineering, Marcel Dekker, Inc. #### **REFERENCES:** - 1. Anton Moser, "Bioprocess Technology, Kinetics and Reactors", , Springer Verlag. - 2. James E. Bailey & David F. Ollis, Biochemical Engineering Fundamentals, McGraw Hill. - 3. James M. Lee, Biochemical Engineering, PHI, USA. - 4. Atkinson, Handbook of Bioreactors, #### **COURSE OUTCOMES** Upon completion of the course, the students will be able - To select appropriate bioreactor configurations and operation modes based on the nature of bio products and other criteria. - To analyse the regime analysis and hydrodynamics of bioprocesses and apply the criteria in the design of bioreactors. - To apply and analyse diffusion effects and kinetics of immobilized enzyme systems and the design of immobilized enzyme reactors. - To develop skills in modelling and simulation of bioprocesses so as to reduce costs and to enhance the quality of products and systems. - To plan a research career or to work in the biotechnology industry with strong foundation about bioreactor processes and design considerations. | | | | | | MA | PPING | OF C | Os WIT | H POs | AND PS | SOs | | | | | |-----|-----|-----|-----|-----|------|-------|-------|--------|-------|--------|------|------|------|---------|-------------------| | COs | | | | | PROG | RAM | OUTCO | MES (I | POs) | | | | | GRAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | | CO2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | | CO3 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 3 | 3 | | CO4 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | | CO5 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | # BT1503 ANALYTICAL METHODS AND INSTRUMENTATION L T P C 3 0 0 3 # **OBJECTIVES:** To enable the students - To have a fundamental knowledge about the Light spectrum, Absorption, Fluorescence, NMR, Mass spectroscopy - To acquire knowledge on the different chromatographic methods for separation of biological products. #### UNIT I: INTRODUCTION TO SPECTROMETRY 9 Properties of electromagnetic radiation- wave properties – components of optical instruments – Sources of radiation – wavelength selectors – sample containers – radiation transducers – Signal process and read outs – signal to noise ratio - sources of noise – Enhancement of signal to noise - types of optical instruments – Principle of Fourier Transform optical Measurements. CO1 #### UNIT II: MOLECULAR SPECTROSCOPY 9 Molecular absorption spectrometry – Measurement of Transmittance and Absorbance – Beer's law – Instrumentation - Applications -Theory of fluorescence and Phosphorescence – Instrumentation – Applications – Theory of Infrared absorption spectrometry – IR instrumentation – Applications – Theory of Raman spectroscopy – Instrumentation – applications. CO2 # UNIT III: MAGNETIC RESONANCE SPECTROSCOPY AND MASS SPECTROMETRY 9 Theory of NMR – environmental effects on NMR spectra – chemical shift- NMR-spectrometers – applications of 1H and 13C NMR- Molecular mass spectra – ion sources – Mass spectrometer. Applications of molecular mass - Electron paramagnetic resonance- g values – instrumentation CO3 #### UNIT IV: SEPARATION METHODS Ś General description of chromatography – Band broadening and optimization of column performance- Liquid chromatography – Partition chromatography – Adsorption chromatography – Ion exchange chromatography -size exclusion chromatography- Affinity chromatography principles of GC and applications – HPLC- Capillary electrophoresis – Applications. CO4 # UNIT V: ELECTRO ANALYSIS AND SURFACE MICROSCOPY 9 Electrochemical cells- Electrode potential cell potentials – Potentiometry- reference electrode – ion selective and molecular selective electrodes – Instrument for potentiometric studies – Voltammetry – Cyclic and pulse voltammetry- Applications of voltammetry . Study of surfaces – Scanning probe microscopes – AFM and STM. CO₅ **TOTAL PERIODS: 45** #### **TEXT BOOKS:** 1. Skoog, D.A. F. James Holler, and Stanky, R.Crouch "Instrumental Methods of Analysis". 6th Edition, Cengage Learning , 2016. - 2. Willard, Hobart, etal., "Instrumental Methods of Analysis". 7th Edition, CBS, 1986. - 3. Braun, Robert D. "Introduction to Instrumental Analysis". Pharma Book Syndicate, 1987. - 4. Ewing, G.W. "Instrumental Methods of Chemical Analysis", 5th Edition, McGraw-Hill, 1985. #### **REFERENCES:** - 1. Sharma, B.K. "Instrumental Methods of Chemical Analysis: Analytical Chemistry" Goel Publishing House, 1972. - 2. Haven, Mary C., etal., "Laboratory Instrumentation". 4th Edition, John Wiley, 1995. #### **COURSE OUTCOMES** Upon completion of the course, the students will gain knowledge on - CO1 Students would have a fundamental knowledge about the light spectrum and basics of measurement. - CO2 Students would have gained knowledge about the working principle of optical methods and working principle of spectroscopic techniques. - CO3 Students would have developed knowledge about the working principle of resonance and mass spectrometry. - At the end of the course the student would acquire knowledge on different types of chromatographic methods for separation of biological products - At the end of the course the student would acquire knowledge on different types of electroanalytical methods and electron microscopes. | | | | | | M | APPIN | G OF C | Os WI | тн ро | s AND F | SOs | | | | | |-----|-----|-----|-----|-----|------|-------|--------|--------|-------|---------|------|------|------|---------|------| | COs | | | | | PROG | RAM C | отсо | MES (F | POs) | | | | | GRAM SF | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | - | - | 1 | 3 | - | - | - | - | - | - | 2 | 3 | - | - | | CO2 | 3 | - | - | 1 | 3 | - | - | - | - | - | - | 2 | 3 | 2 | 2 | | СОЗ | 3 | - | - | 2 | 3 | - | - | - | - | - | - | 3 | 3 | 2 | 3 | | CO4 | 3 | - | - | 1 | 3 | - | - | - | - | - | - | 3 | 3 | 2 | 2 | | CO5 | 3 | - | - | 1 | 3 | - | - | - | - | - | - | 3 | 3 | 2 | 3 | BT1504 #### PROTEIN ENGINEERING L T P C 3 0 0 3 # **OBJECTIVES:** - To make the students identify the importance of protein biomolecules. - The course prepares the students to realize the structure-function relationships in proteins. # UNIT I: BONDS, ENERGIES, BUILDING BLOCKS OF PROTEINS 9 Covalent, Ionic, Hydrogen, Coordinate, hydrophobic and Vander walls interactions in protein structure. Interaction with electromagnetic radiation (radio, X-ray) and elucidation of protein structure. Amino acids (the students should be thorough with three and single letter codes) and their molecular properties (size, solubility, charge, pKa), Chemical reactivity in relation to post-translational modification (involving amino, carboxyl, hydroxyl, thiol, imidazole groups). **CO1** #### UNIT II: PROTEIN ARCHITECTURE 9 Primary structure: peptide mapping, peptide sequencing - automated Edman method & mass spec. High-throughput protein sequencing setup Secondary structure: Alpha, beta and loop structures and methods to determine Super-secondary structure: Alpha-turn-alpha, beta-turn beta CO₂ (hairpin), beta-sheets, alpha-beta-alpha, topology diagrams, up and down & TIM barrel structures nucleotide binding folds, prediction of substrate binding sites. **UNIT III: TERTIARY STRUCTURE** 9 Tertiary structure: Domains, folding, denaturation and renaturation, overview of methods to determine 3D structures. Quaternary structure: Modular nature, formation of complexes. CO₃ Computer exercise on the above aspects. **UNIT IV:** STRUCTURE-FUNCTION RELATIONSHIP 9 DNA-binding proteins: prokaryotic transcription factors, Helix-turn-Helix motif in DNA binding, Trp Repressor, Eukaryotic transcription factors, Zn fingers, helix-turn
helix motifs in homeodomain, Leucine zippers. Membrane proteins: General characteristics, Transmembrane segments, prediction, bacteriorhodopsin and Photosynthetic reaction center, Immunoglobulins: IgG Light **CO4** chain and heavy chain architecture, abzymes and Enzymes: Serine proteases, understanding catalytic design by engineering trypsin, chymotrypsin and elastase, substrate-assisted catalysis other commercial applications. Computer exercise on the above aspects. UNIT V: **PROTEOMICS** 9 Introduction to the concept of proteome, components of proteomics, proteomic analysis, importance of proteomics in biological functions, protein-protein interactions and methods to study #### **TEXT BOOKS:** 1. Branden C. and Tooze J., "Introduction to Protein Structured" 2nd Edition, Garland Publishing, 1999. CO₅ **TOTAL PERIODS: 45** 2. Creighton T.E. "Proteins" 2nd Edition. W.H. Freeman, 1993. Computer exercise on the above aspects. 3. Pennington, S.R and M.J. Dunn, "Proteomics: Protein Sequence to Function". Viva Books, 2002. it: protein arrays, cross linking methods, affinity methods, yeast hybrid systems and protein arrays. 4. Liebler, "Introduction to Proteomics" Humana Press, 2002. #### **REFERENCES:** - 1. Voet D. and Voet G., "Biochemistry". 3rd Edition. John Wiley and Sons, 2008. - 2. Haggerty, Lauren M. "Protein Structure: Protein Science and Engineering". Nova Science Publications, 2011. 3. Williamson, Mike "How Proteins Work". Garland Science, 2012. # **COURSE OUTCOMES** Upon completion of the course, - CO1 Students will learn and understand about the basic of protein architecture in a protein molecule. - Students will educate about the structural fold and basic tools used to identify the protein sequence & structure. - Students will know how to identify the higher hierarchy of protein fold with the advanced tools & also to know the protein protein interaction - Students will know about the basic structural & functional relationship to gain a knowledge on protein utilisation for modern applications. - Students will understand the various advancement and wide requirement of informatics tools towards the medical diagnostic purposes. | | | | | | MA | PPING | OF CC | Os WIT | H POs | AND PS | 3Os | | | | | |-----|-----|-----|-----|-----|------|-------|-------|--------|-------|--------|------|------|------|---------|------| | COs | | | | | PROG | RAM C | OUTCO | MES (I | POs) | | | | | GRAM SI | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | 1 | - | 3 | - | - | 2 | - | - | - | - | 1 | 2 | 3 | 2 | | CO2 | - | 1 | - | 2 | - | - | - | - | - | - | - | - | 2 | 3 | 2 | | CO3 | 1 | 2 | - | 3 | 1 | 2 | - | - | - | - | - | - | 1 | 3 | - | | CO4 | 1 | - | - | 1 | 2 | - | - | - | - | - | - | 1 | 3 | 2 | 1 | | CO5 | - | 3 | 2 | - | - | 1 | 2 | - | - | - | - | 1 | 2 | 3 | 1 | #### **BIOPROCESS LABORATORY I** L T P C 0 0 4 2 #### **OBJECTIVES:** - To train the students on enzyme kinetics and parameters which influence enzyme activity. - To train the students on enzyme immobilization and medium optimization methods. - To train on methods to investigate the growth of microorganisms in different systems under different conditions. #### LIST OF EXPERIMENTS - 1.Enzyme kinetics Determination of Michaelis Menten parameters - 2. Enzyme activity Effect of Temperature and Deactivation Kinetics - 3. Enzyme activity Effect of pH - 4. Enzyme inhibition kinetics - 5. Enzyme immobilization Gel entrapment method - 6. Enzyme immobilization Cross-linking method - 7. Enzymatic conversion in Packed bed Column Reactor - 8. Growth of Bacteria Estimation of Biomass, Calculation of Specific Growth Rate and Yield Coefficient - 9. Optimization of medium by Plackett Burman Design - 10. Optimization by of medium Response Surface Methodology # **Required Equipment:** - 1. Autoclave, - 2. Hot Air Oven, - 3. Incubators, - 4. Light Microscopes, - 5. Incubator Shaker, - 6. Colorimeter, - 7. Laminar Flow Chamber **TOTAL PERIODS: 60** #### **REFERENCES:** 1Bailey and Ollis, "Biochemical Engineering Fundamentals", McGraw Hill (2nd Ed.), 1986. - 2. Shuler and Kargi, "Bioprocess Engineering", Prentice Hall, 1992. - 3. Pauline Doran, Bioprocess Engineering Calculation, Blackwell Scientific Publications. - 4. Peter F. Stanbury, Stephen J. Hall & A. Whitaker, Principles of Fermentation Technology, - 5. Science & Technology Books. # **COURSE OUTCOMES** Upon completion of the course, the students will gain knowledge on | CO1 Explain about Enzyme kinetics and parameters involved in 6 | enzyme activities. | |---|--------------------| |---|--------------------| CO2 Understand and have thorough knowledge in methods adopted for enzyme immobilization CO3 Evaluate the growth kinetics of microorganisms and become adept with medium optimization techniques CO4 Understand about the fundamentals involved in operation a reactor system **CO5** Evaluate the value of inhibition kinetics and their effect on enzyme activities | | | | | | MA | PPING | OF C | Os WI | тн ро | s AND F | PSOs | | | | | |-----|-----|-----|-----|-----|------|-------|------|-------|-------|---------|------|------|------|-----------------|-------------------| | COs | | | | | PROG | RAM C | UTCO | MES (| POs) | | | | | GRAM S
COMES | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 2 | 2 | 3 | - | 1 | - | - | - | - | - | - | - | 2 | 2 | 3 | | CO2 | 1 | 2 | 3 | - | 3 | - | - | - | - | - | - | - | 1 | 2 | 3 | | CO3 | 1 | 2 | 2 | 1 | 1 | - | - | - | - | - | - | - | 2 | 2 | 3 | | CO4 | 3 | 1 | 2 | 2 | 1 | - | - | - | - | - | - | - | 3 | 2 | 2 | | CO5 | 2 | 1 | 3 | 1 | 2 | - | - | | - | - | - | - | 1 | 2 | 3 | BT1508 #### ANALYTICAL METHODS AND INSTRUMENTATION LAB _ . . . 0 0 4 2 # **OBJECTIVES:** To train the students - To have a practical hands on experience on Absoprtion Spectroscopic methods - To acquire experience in the purification by performing chromatography - To validate and analysis using spectrometric and microscopic techniques #### LIST OF EXPERIMENTS - 1. Precision and validity in an experiment using absorption spectroscopy. - 2. Validating Lambert-Beer's law using KMnO₄ - 3. Finding the molar absorbtivity and stoichiometry of the Fe (1,10 phenanthroline)3 using absorption spectrometry. - 4. Finding the pKa of 4-nitrophenol using absorption spectroscopy. - 5. UV spectra of nucleic acids. - 6. Chemical actinometry using potassium ferrioxolate. - 7. Estimation of SO₄²⁻⁻ by nephelometry. - 8. Estimation of Al³⁺ by Flourimetry. - 9. Limits of detection using aluminium alizarin complex. - 10. Chromatography analysis using TLC. - 11. Chromatography analysis using column chromatography. # Requirements: # **Equipment Needed for 20 Students** - 1. Colorimeter 2, - 2. Glassware, - 3. Chemicals as required # **TOTAL PERIODS: 60** #### **REFERENCES:** - 1. Skoog, D.A. F. James Holler, and Stanky, R.Crouch "Instrumental Methods of Analysis". 6th Edition, Cengage Learning, 2016. - 2. Willard, Hobart, etal., "Instrumental Methods of Analysis". 7th Edition, CBS, 1986. - 3. Braun, Robert D. "Introduction to Instrumental Analysis". Pharma Book Syndicate, 1987. - 4. Ewing, G.W. "Instrumental Methods of Chemical Analysis", 5th Edition, McGraw-Hill, 1985. #### **COURSE OUTCOMES** Upon completion of the course, the students - **CO1** Would have a fundamental knowledge on the principles and types of bioanalytical instruments. - **CO2** Would have gained knowledge about the use of the instrumental methods (spectroscopy) in biological sample analysis. - Would have developed knowledge about the chromatographic method principle and resolving a compound using it. | | | | | | MA | PPING | OF CC | s WITH | l POs | AND PS | Os | | | | | |-----|-----|-----|-----|-----|------|-------|-------|--------|-------|--------|------|------|------|--------|------| | COs | | | | | PROG | RAM C | UTCO | MES (F | POs) | | | | | RAM SF | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | - | - | 1 | 3 | - | - | 2 | - | - | - | - | 3 | 3 | 2 | | CO2 | 3 | - | - | 1 | 3 | - | - | 2 | - | - | - | - | 3 | 3 | 3 | | CO3 | 3 | - | - | 1 | 3 | - | - | 2 | - | - | - | - | 3 | 3 | 3 | # **VI SEMESTER** BT1601 **COMPUTATIONAL BIOLOGY** C **OBJECTIVES:** To improve the programming skills of the student To let the students know the recent evolution in biological science UNIT I: INTRODUCTION 9+6 Introduction to Operating systems, Linux commands, File transfer protocols ftp and telnet, Introduction to Bioinformatics and Computational Biology, Biological sequences, Biological CO1 databases, Genome specific databases, Data file formats, Data life cycle, Database management system models, Basics of Structured Query Language (SQL). UNIT II: **SEQUENCE ALIGNMENT** 9+6 Sequence Analysis, Pair wise alignment, Dynamic programming algorithms for computing edit distance, string similarity, shotgun DNA sequencing, end space free alignment. Multiple sequence alignment, Algorithms for Multiple sequence alignment, Generating motifs and profiles, Local and CO₂ Global alignment, Needleman and Wunsch algorithm, Smith Waterman algorithm, BLAST, PSIBLAST and PHIBLAST algorithms. UNIT III: **PHYLOGENETIC METHODS** 9+6 Introduction to phylogenetics, Distance based trees UPGMA trees, Molecular clock theory, Ultrametric trees, Parsimonious trees, Neighbour joining trees, trees based on morphological traits, Bootstrapping. Structural genomics. Applications of informatics techniques in genomics and CO₃ proteomics: Assembling the genome, STS content mapping for clone contigs and other mapping techniques. **UNIT IV:** PROTEIN STRUCTURE ANALYSIS 9+6 Protein Secondary structure and tertiary structure prediction methods. Homology modeling, ab
initio approaches, Threading, Critical Assessment of Structure Prediction. Machine learning techniques: Artificial Neural Networks in protein secondary structure prediction, Hidden Markov Models for gene CO₄ finding, Decision trees, Support Vector Machines. Introduction to Systems Biology and Synthetic Biology, Microarray analysis, DNA computing, Bioinformatics approaches for drug discovery. Functional annotation, Peptide mass fingerprinting. UNIT V: PERL PROGRAMMING 9+6 Basics of PERL programming for Bioinformatics: Data types: scalars and collections, operators, Program control flow constructs, Library Functions: String specific functions, User defined functions, File handling. CO₅ **TOTAL PERIODS: 45+30 = 75** # **TEXT BOOKS:** - 1. Introduction to Bioinformatics by Arthur K. Lesk, Oxford University Press. - 2. Algorithms on Strings, Trees and Sequences by Dan Gusfield, Cambridge University Press. - 3. Biological Sequence Analysis Probabilistic Models of proteins and nucleic acids by R.Durbin, S.Eddy, A.Krogh, G.Mitchison. - 4. Bioinformatics Sequence and Genome Analysis by David W. Mount, Cold Spring HarborLaboratory Press. 5. Beginning Perl for Bioinformatics: An introduction to Perl for Biologists by James Tindall, O'Reilley Media # **REFERENCES:** 1. Bioinformatics The Machine Learning Approach by Pierre Baldi and Soren Brunak. # **COURSE OUTCOMES** Upon completion of the course, the students will - CO1 Understand the fundamentals of operating systems, biological sequences and sequence databases. - **CO2** Gain knowledge about the sequence alignment programs and its importance in Bioinformatics. - CO3 Understand about phylogenetic trees and mapping techniques. - CO4 Understand the principle behind molecular modelling and drug designing related advanced techniques. - Gain knowledge in programming language and to develop bioinformatics related tools with programming skills. | | | | | | MA | PPING | OF C | Os WIT | H POs | AND PS | SOs | | | | | |-----|-----|-----|-----|-----|------|-------|------|--------|-------|--------|-----|---|---|---|-------------------| | COs | | | | | PROG | RAM C | UTCO | MES (I | POs) | | | | | | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | | CO1 | 1 | 2 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | | CO2 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | | СОЗ | 3 | 2 | 3 | 2 | 3 | 2 | 2 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | | CO4 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 2 | 3 | 3 | 2 | 3 | 3 | | CO5 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | BT1602 #### APPLIED CHEMICAL REACTION ENGINEERING L T P C 3 0 0 3 # **OBJECTIVES:** - To provide the basic concepts of types of reactions, variable affecting the rate of reaction, predicting the rate equations for different types of reactions. - To provide the information about different reactor systems, deriving the performance equations and predicting the rate equations in chemical reaction engineering system. # UNIT I: SCOPE OF CHEMICAL KINETICS & CHEMICAL REACTION ENGINEERING 9 Broad outline of chemical reactors, rate equations; concentration and temperature dependence; development of rate equations for different homogeneous reactions. Industrial scale reactors. CO1 | UNIT II: | IDEAL REACTORS | 9 | |--------------------------------------|--|-----| | Isothermal batch, reactor systems; n | flow, semi-batch reactors; performance equations for single reactors; multiple nultiple reactions. | CO2 | | UNIT III: | GAS-SOLID, GAS-LIQUID REACTIONS | 9 | | RTD in non-ideal f | low; non-ideal flow models; reactor performance with non-ideal flow. | CO3 | | UNIT IV: | GAS-SOLID, GAS-LIQUID REACTIONS | 9 | | Resistances and equations. | rate equations; heterogeneous catalysis; reactions steps; resistances and rate | CO4 | | UNIT V: | FIXED BED AND FLUID BED REACTORS | 9 | | G/L reactions on s | olid catalysis; trickle bed, slurry reactors; three phase-fluidized beds; reactors for | CO5 | # TOTAL PERIODS: 45 # **TEXT BOOKS:** fluid-fluid reactions; tank reactors. - 1. Levenspiel O. Chemical Reaction Engineering. IIIrd Edition. John Wiley.2006. - 2. Fogler H.S. Elements Of Chemical Reaction Engineering. Prentice Hall India.2002. #### REFERENCES: - 1. Missen R.W., Mims C.A., Saville B.A. Introduction to Chemical Reaction Engineering and Kinetics. John Wiley.1999 - 2. Dawande, S.D., "Principles of Reaction Engineering", 1st Edition, Central Techno Publications, 2001. - 3. Richardson, J.F. and Peacock, D.G., "Coulson Richardson Chemical Engineering", Vol.III, IIIrd Edition, Butterworth- Heinemann- Elsevier, 2006. # **COURSE OUTCOMES** Upon completion of the course, the students will gain knowledge on - Calculating the conversions, concentrations and rates in a reaction and identify, formulate and solve chemical engineering problems. - **CO2** Designing reactors for heterogeneous reactions and optimizing operating conditions. - CO3 Demonstrating experimental data using standard statistical methods to establish quantitative results. - **CO4** Understanding fluid solid reactions and the resistances encountered during reactions. - **CO5** Designing a reactor for bio based products to achieve production and yield specifications. | | | | | | M | APPIN | G OF (| COs W | ITH PC | Os AND I | PSOs | | | | | |-----|-----|-----|-----|-----|------|-------|--------|-------|--------|----------|------|------|------|---------|------| | COs | | | | | PROG | RAM (| OOTUC | MES (| POs) | | | | | GRAM SF | | | ! | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 1 | 2 | 2 | 3 | 1 | - | - | - | 1 | 2 | 2 | | | | | | CO2 | 1 | 2 | 3 | 3 | 1 | 1 | - | - | 1 | 2 | 3 | | | | | | CO3 | 1 | 2 | 3 | 3 | 1 | 1 | - | - | - | _ | - | - | 1 | 2 | 3 | | CO4 | 2 | 2 | 2 | 3 | 1 | 1 | - | | | - | - | | 1 | 2 | 3 | | CO5 | 2 | 2 | 3 | 3 | 1 | 1 | - | - | - | - | - | - | 1 | 2 | 3 | #### **GENETIC ENGINEERING** L T P C 3 0 0 3 #### **OBJECTIVES:** - To discuss the gene cloning methods, tools and techniques involved in gene cloning, genome analysis and genomics. - To explain the heterologous expression of cloned genes in different hosts. #### UNIT I: BASICS OF RECOMBINANT DNA TECHNOLOGY 9 Manipulation of DNA – Restriction and Modification enzymes, Design of linkers and adaptors. Characteristics of cloning and expression vectors based on plasmid and bacteriophage, Vectors for insect, yeast and mammalian system, Prokaryotic and eukaryotic host systems, Introduction of recombinant DNA in to host cells and selection methods. CO1 # UNIT II: DNA LIBRARIES 9 Construction of genomic and cDNA libraries, Artificial chromosomes – BACs and YACs, Chromosomal walking and jumping, Screening of DNA libraries using nucleic acid probes and antisera. CO2 # UNIT III: SEQUENCING AND AMPLIFICATION OF DNA 9 Maxam Gilbert's and Sanger's methods of DNA sequencing. PCR & Variants of PCR: Inverse PCR, Nested PCR, AFLP PCR, Allele specific PCR, Assembly PCR, Asymmetric PCR, Hot start PCR, inverse PCR, Colony PCR, single cell PCR, Real-time PCR/qPCR – SYBR green assay, Taqman assay, Molecular beacons. Site directed mutagenesis. CO3 # UNIT IV: ORGANIZATION AND STRUCTURE OF GENOMES 9 Organization and structure of genomes, Genome sequencing methods, Conventional and shotgun genome sequencing methods, Next generation sequencing technologies, Ordering the genome sequence, Genetic maps and Physical maps, STS content based mapping, Restriction Enzyme Finger Printing, Hybridization mapping, Radiation Hybrid Maps, Optical mapping. ORF finding and functional annotation. CO4 # UNIT V: CURRENT STATUS OF GENOME SEQUENCING PROJECTS CO5 9 Current status of genome sequencing projects, Introduction to Functional genomics, Microarrays, Serial Analysis of Gene expression (SAGE), Subtractive hybridization, DIGE, TOGA, Yeast Twohybrid System, Comparative Genomics, Proteogenomics, Web resources for Genomics, Applications of genome analysis and genomics. TOTAL PERIODS: 45 #### **TEXT BOOKS:** - 1. Old RW, Primrose SB, "Principles Of Gene Manipulation, An Introduction To Genetic Engineering ", Blackwell Science Publications, 1993. - 2. Principles of Genome Analysis and Genomics by S.B.Primrose and R.M.Twyman, 3rd Ed.(Blackwell Publishing) #### **REFERENCES:** - 1. Ansubel FM, Brent R, Kingston RE, Moore DD, "Current Protocols In Molecular Biology"Greene Publishing Associates, NY, 1988. - 2.Berger SI, Kimmer AR, "Methods In Enzymology", Vol 152, Academic Press # **COURSE OUTCOMES** Upon completion of the course, the students will gain knowledge on - Cloning aspects and enzymes involved in creating rDNA for producing commercially important genes. - CO2 Knowledge about library creation and current techniques used for screening of libraries - CO3 Knowledge about recent PCR techniques used in amplification of DNA - CO4 Awareness of current techniques used in gene and genome sequencing. - **CO5** Awareness about microarrays, Analysis of Gene expression and proteomics. | | | | | | MA | PPING | OF C | Os WI | TH PO | S AND P | SOs | | | | | |-----|-----|---|-----|-----|------|-------|------|--------|-------|---------|------|---|---|--------|-------------------| | COs | | | | | PROG | RAM C | UTCO | MES (I | POs) | | | | | GRAM S | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | CO1 | 3 | - 3 - 2 - 1 1 3 2 1 | | | | | | | | | | | | | | | CO2 | 1 | - 3 - 2 - 1 1 - - - 3 2 1 - 2 - 3 - - - - - 2 2 3 | | | | | | | | | | | | | 3 | | СОЗ | 3 | 1 | 2 | 1 | 3 | - | - | - | - | - | - | - | 1 | 3 | 2 | | CO4 | 2 | 2 | 2 | 1 | 3 | - | - | - | - | - | - | - | 2 | 3 | 3 | | CO5 | 2 | 2 | 2 | 1 | 3 | - | - | - | - | - | - | - | 2 | 2
| 3 | #### **BIOPROCESS LABORATORY II** L T P C 0 0 4 2 # **OBJECTIVES:** - The course applies earlier learned knowledge on bioreactors and sterilization kinetics. - Skills and knowledge gained is useful by analogy when solving problems typical for the bioindustry or for research #### LIST OF EXPERIMENTS: - 1. Estimation of Mixing Time in reactor - 2. Residence time distribution - 3. Estimation of K_La − Power Correlation Method - 4. Estimation of K_La Sulphite Oxidation Method - 5. Estimation of K_La − Dynamic Gassing-out method, - 6. Estimation of Overall Heat Transfer Coefficient - 7. Batch Sterilization kinetics - 8. Batch cultivation with exhaust gas analysis. - 9. Fed batch cultivation and Total cell retention cultivation - 10. Photo bioreactor **TOTAL PERIODS: 60** #### **EQUIPMENT NEEDED FOR 30 STUDENTS** - 1. Reactors 6 - 2. Incubators 1 - 3. Incubator Shaker 1 - 4. Spectrophotometer 1 - 5. Laminar Flow Chamber 1 - 6. Glassware, Chemicals, Media as required # **REFERENCES:** - 1. Anton Moser, "Bioprocess Technology, Kinetics and Reactors", , Springer Verlag. - 2. James E. Bailey & David F. Ollis, Biochemical Engineering Fundamentals, McGraw Hill. - 3. James M. Lee, Biochemical Engineering, PHI, USA. - 4. Atkinson, Handbook of Bioreactors, - 5. Harvey W. Blanch, Douglas S. Clark, BiochemicalEngineering, Marcel Decker Inc. #### **COURSE OUTCOMES** Upon completion of the course, the students will be able - **CO1** To understand and design the different modes of bioreactor - CO2 To estimate the heat transfer and oxygen transfer coefficient - CO3 To estimate the residence time and the mixing time in the bioreactor | | | | | | M | APPIN(| 3 OF C | Os WIT | īH POs | AND PS | 3Os | | | | | |-----|-----|-----|-----|-----|------|--------|--------|--------|--------|--------|-----|---|---|---|----------------------| | COs | | | | | PROG | RAM (| оитсо | MES (F | POs) | | | | | | SPECIFIC
S (PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | CO1 | - | - | 1 | 2 | 1 | 2 | 1 | 2 | - | - | - | - | - | 3 | 2 | | CO2 | - | - | 2 | 2 | 2 | 1 | 1 | 2 | - | - | - | - | - | 3 | 2 | | CO3 | - | - | 2 | 1 | 1 | 3 | 2 | 2 | - | - | - | - | - | 3 | 2 | #### **GENETIC ENGINEERING LABORATORY** . T P C 0 0 4 2 # **OBJECTIVES:** - Provide hands-on experience in performing basic recombinant DNA techniques. - Introduce students to the theory behind in each techniques and to describe common applications of each methodology in biological research. #### LIST OF EXPERIMENTS - 1. Preparation of plasmid DNA - 2. Elution of DNA from agarose gels - 3. Restriction digestion - 4. Ligation of DNA into expression vectors - 5. Transformation & Selection of recombinants Blue white screening assay - 6. Optimisation of time of inducer for recombinant protein expression - 7. Expression of protein profiling by SDS PAGE - 8. Blotting Techniques: Western and Southern blotting methods - 9. PCR Amplification of genes - 10. Colony lysate PCR. # **Required Equipments:** 1. Electrophoresis Unit, Glassware, PCR, Laminar Flow Chamber, Incubators and Incubator Shaker, Gel Documentation, Spectrophotometer, Cooling Centrifuge and Gel Rocker **TOTAL PERIODS: 60** #### **REFERENCES:** - 1.Sambrook, J. and Russsel, D.W., "Molecular cloning A laboratory manual", Third edition, Cold Spring Harbor Laboratory Press, Cold Spring harbor, New York, USA, 2001. - 2. Old RW, Primrose SB, "Principles Of Gene Manipulation, An Introduction To Genetic Engineering", Blackwell Science Publications, 1993. - 3. Ansubel FM, Brent R, Kingston RE, Moore DD, "Current Protocols In Molecular Biology", Greene Publishing Associates, NY, 1988. - 4. Berger SI, Kimmer AR, "Methods In Enzymology", Vol 152, Academic Press, 1987 #### **COURSE OUTCOMES** Upon completion of the course, the students will be able - **CO1** Describe the main principles, methods for preparation and cloning of DNA in various organisms. - **CO2** Express clearly about the gene amplification and methods for analysis of DNA, such as hybridization,restriction analysis and gene expressions. - Use genetic and biotechnological techniques to manipulate genetic materials and develops new and improved living organisms. | | | | | | MA | PPING | OF C | Os WIT | H POs | AND PS | SOs | | | | | |-----|-----|---|---|---|------|-------|------|--------|-------|--------|-----|---|---|---------|-------------------| | COs | | | | | PROG | RAM C | UTCO | MES (F | POs) | | | | | GRAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 | | | | | | | | | | | | | | | CO1 | 2 | | | | | | | | | | | | 2 | 2 | 3 | | CO2 | 2 | 1 | 2 | 2 | 3 | - | - | 1 | | - | ı | ı | 2 | 3 | 3 | | CO3 | 2 | 1 | 2 | 2 | 3 | 1 | 1 | 1 | - | - | - | - | 3 | 2 | 3 | # **BVA001** ADVANCEMENTS IN DRUG DESIGNING C 2 2 **OBJECTIVES:** To understand the basics of drug designing To understand genetic makeup of the individual to have better approach on health care • To characterize a drug for its pharmacokinetics and metabolism To understand advanced drug designing techniques To understand the methods to immunize test animals and to raise anti-sera **FUNDAMENTALS OF DRUG DESIGNING** UNIT I: 3+6 Introduction to bioinformatics and understanding of biological databases; Introduction to **CO1** pharmacogenomics and their applications in drug discovery research UNIT II: PERSONALIZED MEDICINES 3+6 Omics and personalized medicine; Pharmacist role and their new challenges in personalized CO₂ medicine; Ethical, legal, economical and social issues in pharmacogenomics **UNIT III:** PHARMACEUTICAL ANALYSIS AND MODELLING 3+6 Protein modelling; Protein databank; Alignment of protein sequences; Mutational analysis using CO₃ multiple sequence alignment; Gene expression using genome scan and gene mark **UNIT IV: ADVANCED DRUG DESIGNING TECHNIQUES** 3+6 Secondary structure prediction – hydropathic index; Active site prediction – activity pockets; Ligand modelling – pharmacophore redesigning; Denova designing; Virtual screening – drug **CO4** likeness and toxicology UNIT V: TARGETED DELIVERY AND CANCER TREATMENT 3+6 Lecture on raising and harvesting monoclonal antibodies; biomarkers screening for cancer -CO₅ targeted delivery and bioimaging; commercial products and research application in cancer therapy **TOTAL PERIODS: 45 COURSE OUTCOMES** Upon completion of the course, the students will be able to CO1 Understand the basics of drug designing. CO₂ Understand the importance of personalized medicine and its futuristic applications. CO₃ Characterize a drug for its pharmacokinetics and metabolism. CO4 Understand the mechanism behind drug designing using online tools. Understand the product development and bioimaging for targeted delivery. CO₅ | | | | | | M | APPIN | G OF C | COs WI | TH PO | s AND F | SOs | | | | | |-----|-----|-----|-----|-----|------|--------|--------|--------|-------|---------|------|------|------|-------------------|------| | COs | | | | | PROG | GRAM (| OUTCC | MES (| POs) | | | | | RAM SP
OMES (P | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 2 | 3 | 2 | 2 | 2 | 3 | 3 | | | | | | | | | CO2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 3 | | | | | | | СОЗ | 3 | 3 | 3 | 3 | 3 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 3 | | CO4 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | | CO5 | 3 | 3 | 3 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | #### **VII SEMESTER** # BT1701 TOTAL QUALITY MANAGEMENT FOR BIOTECHNOLOGISTS L T P C 3 0 0 3 # **OBJECTIVES:** - To facilitate the understanding of Quality Management principles and process. - To apply the tools and techniques in bioproduct industry for product quality improvement - To familiarize with the concepts of quality management system and Biosafety levels # UNIT I: INTRODUCTION 9 CO1 Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention. # UNIT II: TQM PRINCIPLES 9 Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating. CO2 # UNIT III: TQM TOOLS AND TECHNIQUES I 9 The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including Bioproduct industries - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types. СОЗ # UNIT IV: TQM TOOLS AND TECHNIQUES II 9 Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures CO4 #### UNIT V: QUALITY MANAGEMENT SYSTEM 9 Introduction—to ISO 9000 Series of Standards—Benefits of ISO Registration- Internal audits Sector Specific Standards—Requirements and benefits -ISO 22000- Food safety Management - HACCP and Elements of Biosafety Levels CO₅ **TOTAL PERIODS: 45** #### **TEXT BOOKS:** 1. Dale H.Besterfiled, Carol B.Michna, Glen H. Besterfield, Mary B.Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe, "Total Quality Management", Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013. #### **REFERENCES:** - 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8 th Edition, First Indian Edition, Cengage Learning, 2012. - 2. Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006. - 3. Suganthi.L and Anand
Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006. - 4. https://www.researchgate.net/publication/339711956 - 5. ISO9001-2015 standards https://www.iso.org/standards.html # **COURSE OUTCOMES** Upon completion of the course, the students will be able - CO1 To understand the basic concepts of total quality management principles and importance of customer - CO2 To comprehend the knowledge on principles and philosophies of quality management - CO3 To realize the importance in applying the tools and techniques in bioproduct industries - **CO4** To apply the tools and techniques of quality management to manufacturing and services processes. - CO5 To understand the importance of ISO and safety level regulations in Bioproduct industries | | | | | | MA | APPING | G OF C | Os WI | TH PO | s AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|--------|--------|-------|-------|---------|------|------|------|------|----------------------| | COs | | | | | PROG | RAM C | OUTCO | MES (| POs) | | | | | | SPECIFIC
S (PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | - | - | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | - | 1 | | CO2 | - | - | - | - | 2 | 2 | 1 | 2 | 3 | 2 | 2 | 2 | - | 1 | 3 | | CO3 | 1 | 2 | 2 | 1 | 3 | 1 | 1 | 1 | 2 | 1 | 3 | 1 | - | - | 2 | | CO4 | 1 | 2 | 3 | 2 | 2 | - | - | 1 | - | - | 1 | 1 | 1 | 1 | 1 | | CO5 | - | 1 | - | - | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | - | - | 1 | # BT1702 #### **DOWNSTREAM PROCESSING** L T P C 3 0 0 3 #### **OBJECTIVES:** - To enable the students to understand the methods to obtain pure proteins, enzymes and bioproducts in general. - Have depth knowledge on downstream processes required in multi-factorial manufacturing environment in a structured and logical fashion. # UNIT I: INTRODUCTION 9 Introduction to downstream processing, principles, characteristics of bio-molecules and bioprocesses. Cell disruption for product release – mechanical, enzymatic and chemical methods. Cell Pretreatment and stabilisation of bioproducts. # CO1 # UNIT II: PHYSICAL METHODS OF SEPARATION 9 Unit operations for solid-liquid separation: Filtration - types of filtration, constant rate and constant pressure filtration, filtration equipments. Centrifugation - types of centrifugation, centrifugation equipment, scale-up of centrifuges. CO₂ # UNIT III: ISOLATION OF PRODUCTS S Precipitation of proteins, adsorption, liquid-liquid extraction, aqueous two-phase extraction, membrane separation operations for product isolation. CO₃ UNIT IV: PRODUCT PURIFICATION 9 Chromatography – principles, instruments and practice. Adsorption, reverse phase, ion exchange, size exclusion, hydrophobic interaction, and affinity chromatographic techniques. **CO4** UNIT V: PRODUCT POLISHING AND FORMULATION ç Drying, lyophilization and Crystallization in final product formulation. CO₅ # TEXT BOOKS: **TOTAL PERIODS: 45** - 1. Belter, P.A., E.L. Cussler and Wei-Houhu "Bioseparations Downstream Processing for Biotechnology", John Wiley, 1988. - 2. Sivasankar, B. "Bioseparations: Principles and Techniques". PHI, 2005. - 3. Asenjo, Juan A. "Separation Processes in Biotechnology". CRC / Taylor & Francis, 1990. #### **REFERENCES:** - 1. Ghosh, Raja "Principles of Bioseparations Engineering". World Scientific, 2006 - 2. "Product Recovery in Bioprocess Technology". (BIOTOL Biotechnology by Open Learning Series). Butterworth Heinmann / Elsevier, 2004. #### **COURSE OUTCOMES** Upon completion of the course, the students will gain knowledge on - The product recovery, unit operations involved and factors affecting bioseparation of bioproducts and recombinant products. - **CO2** Selection and design of filtration and centrifugation operation for bioseparation. - **CO3** To identify a suitable unit operation for isolation and concentration for the given bioproduct. - **CO4** To select a suitable chromatographic operation for purification of given bioproducts. - CO5 Design of various bioproducts polishing methods and purification of various bioproducts/recombinant products. | | | | | | MA | PPING | OF C | Os WIT | H POs | AND P | SOs | | | | | |-----|-----|-------------------|-----|-----|------|-------|------|--------|-------|-------|-----|---|---|---------|-------------------| | COs | | | | | PROG | RAM C | итсо | MES (| POs) | | | | | GRAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | | | CO1 | - | 3 2 2 3 1 - 1 - 2 | | | | | | | | | | | 1 | 1 | - | | CO2 | 1 | | | | | | | | | | | | | 2 | - | | CO3 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | - | - | - | 1 | - | 3 | - | - | | CO4 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | - | - | - | 1 | - | | - | 2 | | CO5 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | - | - | - | 1 | 3 | 1 | - | 3 | | BT1703 | IMMUNOLOGY | L
3 | T
0 | P
0 | C
3 | |---|---|----------|--------|--------|---------| | To explain the antigen-antibody
foreign pathogens/germs.To explain various technique | ons and integration of immune system. y interactions and how the immune system is posses of monoclonal and engineered antibodies ing most of the human diseases. | rotectir | ng th | ebod | ly from | | UNIT I: INTRODUCTION | TO IMMUNE SYSTEM | | | | 9 | | | ine system – immune cells and organs; innate an hemical and molecular nature; haptens, adjuvan | | | (| CO1 | | UNIT II: HUMORAL AND | CELLULAR IMMUNITY | | | | 9 | | cells, antigen processing and presenta | egulation, differentiation and classification of T-cation, theory of clonal selection, TCR; antibodies eneration of diversity; antigen-antibody reactions | s: struc | | (| CO2 | | UNIT III: IMMUNITY AGAI | NST PATHOGENS AND TUMORS | | | | 9 | | | oonses to virus, bacteria, fungi and parasites;
ns, tumor immune response, tumor diagno | | | (| СОЗ | | UNIT IV: IMMUNE TOLER | ANCE AND HYPERSENSITIVITY | | | | 9 | | | es; Major Histocompatibility Complex; Transpl
transplantation; Allergy and hypersensitivity –
mune disorders and diagnosis | | | (| CO4 | | UNIT V: APPLIED IMMUN | NOLOGY | | | | 9 | | | antibodies; Classification of Vaccines-Active and DNA vaccine, edible vaccine, immunodiagnostic release assay) | | | (| CO5 | | TEVT DOOKO | - | ΓΟΤΑΙ | - PEI | RIOD | OS: 45 | | | Dennis R Burtn and Ivan M Roitt., Roitts Essen | tia IImı | nunc | logy, | , 13th | | | naron A Stranford, Kuby Immunology, Macmillan | Intern | ation | ı, | | | 7 th Edition, 2012
3. Ashim K. Chakravarthy, Immunole | ogy, Tata McGraw-Hill, 2006 | | | | | | | hort Course" VIth Edition. John Wiley, 2008.
Immunology" Pearson Education, 2009. | | | | | #### **COURSE OUTCOMES** Upon completion of the course, - Students would have a fundamental knowledge about the various organs involved in immune response and the types of antigen invading the immune system. - Students would have developed knowledge about development, maturation, activation and regulation of T cells, B cells and also about the application of antigen-antibody reaction. - CO3 Students would have gained knowledge about the mechanism by which the body interacts with pathogenic microorganisms and in tumor immunology. - After completing this course, students get familiar about the laws of transplantation, autoimmunity, allergy and have gained the knowledge in immunodeficiency disorders - At the end of the course the student would acquire knowledge on various techniques of monoclonal, engineered antibodies, immunodiagnostic method and have gained the knowledge about the basic criteria for designing a vaccine | | | | | | MA | PPING | OF C | Os WIT | H POs | AND PS | SOs | | | | | |-----|---|---|---|---|------|-------|------|--------|-------|--------|-----|---|----------------------------------|------|------| | COs | | | | | PROG | RAM C | UTCO | MES (F | POs) | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1 | | | | | | | | | | | | | PSO2 | PSO3 | | CO1 | 1 | 2 | - | , | - | - | 1 | - | - | - | - | - | 2 | 1 | - | | CO2 | 1 | 2 | - | - | - | 1 | - | - | - | - | - | - | 1 | 1 | - | | СОЗ | - | - | - | 2 | 1 | 2 | - | - | - | - | - | - | 1 | 2 | 3 | | CO4 | - | - | - | 2 | 2 | 2 | - | - | - | - | - | - | 1 | 2 | 2 | | CO5 | - | - | 2 | 2 | 2 | 1 | - | - | - | - | - | - | 1 | 1 | 2 | # BT1707 # **DOWNSTREAM PROCESSING LABORATORY** L T P C 0 0 4 2 #### **OBJECTIVES:** - To provide hands on training in downstream processing through simple experimentations in the laboratory. This will be a pre-requisite for project work. The objectives of this course is to practice the students - To understand various methods for end product isolation, concentration, purification and stabilization. - To design processes for the recovery and subsequent purification of target biological products. # **LIST OF EXPERIMENTS:** - 1. Solid liquid separation centrifugation - 2. Solid liquid separation microfiltration - 3. Cell disruption techniques –ultrasonication - 4. Cell disruption techniques –French press or Dynomill - 5. Precipitation ammonium sulphite precipitation - 6. Aqueous two phase extraction of biological product - 7. Adsorption of protein - 8. High resolution purification affinity chromatography - 9. High resolution purification ion exchange chromatography - 10. Product polishing spray drying or freeze drying **TOTAL PERIODS: 60** # **LIST OF EQUIPMENT FOR 30 STUDENTS** - 1. Centrifuge 1 - 2. Microfiltration set up 1 - 3. Sonicator 1 - 4. French press or Dynomill 1 - 5. Spray dryer or Freeze dryer 1 - 6. Chromatography kits and other class wares and chemicals. # **REFERENCES:** - 1. P.A. Belter, E.L. Cussler And Wei-Houhu Bioseparations
Downstream Processing For Biotechnology, Wiley Interscience Pun. (1988). - 2. R.O. Jenkins, (Ed.) Product Recovery In Bioprocess Technology Biotechnology ByOpen Learning Series, Butterworth-Heinemann (1992). - 3. J.C. Janson And L. Ryden, (Ed.) Protein Purification Principles, High ResolutionMethods And Applications, VCH Pub. 1989. # **COURSE OUTCOMES** Upon completion of the course, the students will gain knowledge on - **CO1** The separation of whole cells and other insoluble ingredients from the culture broth. - CO2 Cell disruption techniques to release intracellular products - Various techniques like evaporation, extraction, precipitation, membrane separation for concentrating biological products - CO4 Basic principles and techniques of chromatography to purify the biological products - CO5 The methods of formulation of biological products for end uses | | | | | | MA | APPING | OF C | Os WI | TH PO | S AND P | SOs | | | | | |-----|-----|-----|-----|----------------------------------|------|--------|------|-------|-------|---------|-----|---|---|---|---| | COs | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | | | | CO1 | - | | 1 | 2 | | | | | | - | - | - | - | 3 | 2 | | CO2 | - | , | 2 | 2 | , | , | , | , | , | - | - | - | - | 3 | 2 | | СОЗ | - | - | 2 | 3 | - | - | - | - | - | - | - | - | - | 3 | 2 | | CO4 | - | • | 1 | 2 | 2 | - | - | - | - | - | - | - | - | 3 | 2 | | CO5 | - | - | 1 | 2 | 2 | - | 1 | - | - | - | - | - | - | 3 | 2 | #### **IMMUNOLOGY LABORATORY** L T P C 0 0 4 2 # **OBJECTIVES:** - To give practical training in the functioning of immune system. - To give laboratory training in different immunological and immunotechnological techniques. #### **EXPERIMENTS** - 1. Identification of immune cells in a blood smear - 2. Identification of blood group - 3. Testing for typhoid antigens by Widal test - 4. Immunodiffusion Ouchterlony Double Diffusion - 5. Immunoelectrophoresis Rocket or Counter Current immune electrophoresis - 6. Enzyme Linked ImmunoSorbent Assay (ELISA) - 7. Isolation of peripheral blood mononuclear cells - 8. Isolation of monocytes from blood - 9. Immunofluorescence - 10. Identification of t cells by T-cell rossetting using sheep RBC. **TOTAL PERIODS: 60** # **Equipment Needed for 20 Students** - 1. Elisa reader -1 - 2. Microscopes -8 - 3. Microwave owen-1 - 4. Hot plate -4 - 5. Vortex mixer -4 - 6. Table top refrigerated Centrifuge- 1 - 7. Fluorescent microsope- 1 #### REFERENCE: - 1. Roitt I, Male, Brostoff. Immunology, Mosby Publ., 2002. - 2. Kuby J, Immunology, WH Freeman & Co., 2000. - 3. Ashim K. Chakravarthy, Immunology, TataMcGraw-Hill, 1998. #### **COURSE OUTCOMES** Upon completion of the course, the students will be able to - **CO1** Handle different types of animals and to immunize the animals and raise antisera. - CO2 Identify the blood grouping, cells and to isolate the mononuclear cells. - CO3 Identify the Typhoid antigen - **CO4** Determine the antigen and antibody concentration. - **CO5** Identify and analyse the antigen. | | | | | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|-----|-----|-----|------|----------------------------------|-------|------|--------|------|--|-----|---|----------------------------------|---|---|--|--|--|--| | COs | | | | | PROG | RAM O | UTCO | MES (I | POs) | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | PO1 | PO2 | PO3 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | | | | | | | | CO1 | 1 | _ | 3 | - | 2 | 2 | - | 3 | 1 | | - ' | 1 | - | - | - | | | | | | CO2 | 1 | | 3 | - | 2 | 2 | - | 3 | 1 | | - | 1 | | - | - | | | | | | CO3 | - | - | 1 | 1 | 2 | | - | 1 | - | | - ' | 1 | - | - | - | | | | | | CO4 | 1 | - | 1 | 2 | 3 | - | - | 1 | - | | - ' | 1 | - | - | - | | | | | | CO5 | 1 | - | 1 | 2 | 3 | - | - | 1 | - | | - | 1 | - | - | - | | | | | # **SEMESTER VIII** BT1807 PROJECT WORK L T 0 20 10 C # **COURSE OUTCOMES** Upon completion of the course, the students will be able to **CO1** Identify their field of interest **CO2** Search and think about logical solutions **CO3** Formulate and analyze a problem **CO4** Plan experiments to find solutions in a logical manner **CO5** Analyze the results, interpret and communicate in an effective manner | | | | | | M | APPIN | G OF C | Os WI | тн ро | s AND P | SOs | | | | | |-----|-----------------------|-----|-----|------|----------------------------------|-------|--------|-------|-------|---------|-----|---|---|---|---| | COs | | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | | | | CO1 | 2 | 2 | 2 | 1 | 1 | 2 | - | 2 | 1 | 2 | - | 2 | 1 | 1 | - | | CO2 | 2 2 2 1 1 2 - 2 2 - 2 | | | | | | | | | 2 | 1 | 3 | 1 | | | | CO3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 3 | 2 | | CO4 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 3 | 3 | 2 | 2 | 3 | 1 | 3 | 2 | | CO5 | 3 | 2 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 3 | 1 | 2 | 2 | # **PROFESSIONAL ELECTIVE - I** | BT1001 | BIOPHYSICS | L | Т | Р | C | |--------|------------|---|---|---|---| | | | 3 | 0 | 0 | 3 | #### **OBJECTIVES:** To enable the students - To gain structural knowledge of biological systems. - To understand transport and dynamic properties of biological systems. #### UNIT I: MOLECULAR STRUCTURE OF BIOLOGICAL SYSTEMS Intramolecular bonds – covalent – ionic and hydrogen bonds – biological structures –general features – water structure – hydration – interfacial phenomena and membranes – self assembly and molecular structure of membranes. # UNIT II: CONFORMATION OF NUCLEIC ACIDS Primary structure – the bases – sugars and the phosphodiester bonds- double helical structure – the a b and z forms – properties of circular DNA – topology – polymorphism and flexibility of DNA – structure of ribonucleic acids – hydration of nucleic acids. # UNIT III: CONFORMATION OF PROTEINS Conformation of the peptide bond – secondary structures – Ramachandran plots – use of potential functions – tertiary structure – folding – hydration of proteins – hydropathy index. # UNIT IV: CELLULAR PERMEABILITY AND ION – TRANSPORT lonic conductivity – transport across ion channels – mechanism - ion pumps- proton transfer – nerve conduction – techniques of studying ion transport and models. # UNIT V: ENERGETICS & DYNAMICS OF BIOLOGICAL SYSTEMS Concepts in thermodynamics – force and motion – entropy and stability – analyses of fluxes – diffusion potential – basic properties of fluids and biomaterials – laminar and turbulent flows. # **TOTAL PERIODS: 45** 9 9 #### **TEXT BOOKS:** - 1. Biophysics; R. Glaser, Springer Verlag, 2000. - 2. Biophysics: Molecules In Motion; R. Duane. Academic Press, 1999 # **REFERENCES:** 1. Cantror, Charles R. and Paul R. Schimmel "Biophysical Chemistry" . 1-3 Vols. W.H.Freeman& Co.,1980 #### **COURSE OUTCOMES** Upon completion of the course, the students will be able to - **CO1** Understand the forces in biomolecules. - CO2 Understand configurational determinants and stabilizing factors of nucleic acids. - CO3 Understand configurational determinants and stabilizing factors of proteins. - **CO4** Gain the knowledge of cellular permeability and ion transport. - **CO5** Understand the energetics and dynamics of biological systems. 106 | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|---|---|---|----------------------------------|---|---|---|---|---|---|---|---|---|------|------| | COs | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | | | | | | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1 | | | | | | | | | | | | | PSO2 | PSO3 | | CO1 | 3 | 2 | - | 1 | - | - | - | - | - | - | - | 3 | 3 | - | - | | CO2 | 3 | 2 | - | 1 | - | - | 1 | - | - | - | - | 2 | 3 | - | - | | СОЗ | 3 | 2 | - | 1 | - | - | - | - | - | - | - | 2 | 3 | - | - | | CO4 | 3 | 2 | 1 | 2 | - | - | - | - | - | - | - | 3 | 3 | - | 1 | | CO5 | 3 | 2 | 1 | 2 | - | - | - | - | - | - | - | 3 | 3 | - | 2 | #### PRINCIPLES OF FOOD PROCESSING L T P C 3 0 0 3 # **OBJECTIVES:** To enable the students - To know about the constituents and additives present in the food. - To gain knowledge about the microorganisms, which spoil food and food borne diseases. - To know different techniques used for the preservation of foods. # UNIT I: FOOD AND ENERGY a Constituents of food – carbohydrates, lipids, proteins, water, vitamins and minerals, dietarysources, role and functional properties in food, contribution to organoleptic and textural characteristics. # UNIT II: FOOD ADDITIVES 9 Classification, intentional and non-intentional additives, functional role in food processing and preservation; food colourants – natural and artificial; food flavours; enzymes as food processing aids. # UNIT III: MICROORGANISMS ASSOCIATED WITH FOOD 9 Bacteria, yeasts and molds – sources, types and species of importance in food processing and preservation; fermented foods and food chemicals, single cell protein. #### UNIT IV: FOOD BORNE DISEASES 9 Classification – food infections – bacterial and other types; food intoxications and poisonings –bacterial and non-bacterial; food spoilage – factors responsible for spoilage, spoilage of vegetable, fruit, meat, poultry, beverage and other food products #### UNIT V: FOOD PRESERVATION 9 Principles involved in the use of sterilization, pasteurization and blanching, thermal death curves of microorganisms, canning; frozen storage-freezing characteristics of foods, microbial activity at low temperatures, factors affecting quality of foods in frozen storage; irradiation preservation of foods. **TOTAL PERIODS: 45** # **REFERENCE:** - 1. T.P. Coultate Food The Chemistry Of Its Components, 2nd Edn. Royal Society, London, 1992. - 2. B. Sivasanker Food Processing And Preservation, Prentice-Hall Of India Pvt. Ltd. NewDelhi 2002. - 3. W.C. Frazier And D.C. Westhoff Food Microbiology, 4th Ed., Mcgraw-Hill Book Co., NewYork 1988. - 4. J.M. Jay Modern
Food Microbiology, Cbs Pub. New Delhi, 1987. # **COURSE OUTCOMES** Upon completion of the course, the students will be able to - **CO1** Know different constituents present in food and microorganisms involved in processing of food. - CO2 Understand Roles and regulatory levels of food additives during food processing. - **CO3** Gain knowledge on principles and different preservations techniques of food can also be known. - **CO4** Know about diseases associated with the toxic effects of spoiled food. - CO5 Know the importance of Unit operations in modern food processing and impact of the process on food quality | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|--|---|---|---|----------------------------------|---|---|---|---|---|---|---|---|------|------| | COs | | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | | | | | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 | | | | | | | | | | | | | PSO2 | PSO3 | | CO1 | 1 | 1 | - | 3 | ı | 1 | 1 | - | ı | - | - | - | 2 | 2 | 2 | | CO2 | 1 | 1 | - | 3 | ı | 2 | 2 | - | ı | - | 1 | - | 2 | 2 | 3 | | CO3 | 1 | 1 | 1 | 3 | ı | 2 | 2 | ı | ı | | 1 | - | 2 | 2 | 3 | | CO4 | 1 | 1 | - | 3 | ı | 2 | 2 | - | - | - | - | - | 2 | 2 | 3 | | CO5 | 1 | 1 | - | 3 | - | 2 | 2 | - | - | - | - | - | 2 | 2 | 3 | CE1025 # **DISASTER MANAGEMENT** L T P C 3 0 0 3 # **OBJECTIVES:** - To provide students an exposure to disasters, their significance and types. - To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction - To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR) - To enhance awareness of institutional processes in the country - To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity # UNIT I: INTRODUCTION TO DISASTERS 9 Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc – Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability – Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters. CO1 # UNIT II: APPROACHES TO DISASTER RISK REDUCTION (DRR) 9 Disaster cycle – Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies. CO₂ #### UNIT III: INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT 9 Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India – Relevance of indigenous knowledge, appropriate technology and local resources. CO₃ ## UNIT IV: DISASTER RISK MANAGEMENT IN INDIA 9 Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy – Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment. CO4 # UNIT V: DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management. CO₅ # **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. Singhal J.P. Disaster Management, Laxmi Publications, 2010. - 2. Tushar Bhattacharya, Disaster Science and Management, McGraw Hill India Education Pvt. Ltd., 2012. - 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011 - 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010. #### **REFERENCES:** - 1. Govt. of India: Disaster Management Act , Government of India, New Delhi, 2005 - 2. Government of India, National Disaster Management Policy, 2009. ## **COURSE OUTCOMES** - **CO1** Differentiate the types of disasters, causes and their impact on environment and society - CO2 Assess vulnerability and various methods of risk reduction measures as well as mitigation - **CO3** Enhance awareness of institutional processes in the country - Develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity CO5 Draw the hazard and vulnerability profile of India, Scenarios in the Indian context, Disaster damage assessment and management. | | | | | | MA | APPING | G OF C | Os WI | TH PO | s AND F | SOs | | | | | |-----|-----|--|-----|-----|------|--------|--------|-------|-------|---------|------|------|------|------|----------------------| | COs | | | | | PROG | RAM (| OUTCO | MES (| POs) | | | | | | SPECIFIC
S (PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | | | | | | | | | | | | | | 3 | | CO2 | 3 | - | | | | | | | | | | | | 1 | 3 | | СОЗ | 3 | 2 | - | - | - | 1 | 2 | 1 | 2 | - | 1 | 2 | - | 2 | 2 | | CO4 | 3 | 2 | - | - | - | 1 | 1 | 1 | 1 | - | 1 | 3 | - | 1 | 2 | | CO5 | 3 | 2 | - | - | 1 | 1 | 2 | 1 | 3 | - | 1 | 3 | - | 1 | 2 | | BT1004 | MARINE BIOTECHNOLOGY L T 3 0 | P
0 | C
3 | |--------------------------------------|--|--------|--------| | UNIT I: | INTRODUCTION TO MARINE ENVIRONMENT | | 9 | | and biotic factors | d seas – ocean currents – physical and chemical properties of sea water –abiotic of the sea – ecological divisons of the sea – history of marine biology – cycles – food chain and food web. | С | 01 | | UNIT II: | IMPORTANT MARINE ORGANISMS | | 9 | | • | zooplantons – nektons – benthos – marine mammals – marine algae – al reefs – deep sea animals and adaptation – intertidal zone – fauna and flora. | C | 02 | | UNIT III: | MARINE ENVIRONMENTAL BIOTECHNOLOGY | | 9 | | Marine pollution - marine fouling an | - biology indicators (marine micro , algae) – biodegradation and bioremediation – d corrosion. | C | O3 | | UNIT IV: | MARINE PHARMACOLOGY | | 9 | | Medicinal compo agents. | und from marine flora and fauna – marine toxins , antiviral and antimicrobial | C | 04 | | UNIT V: | AQUACULTURE TECHNOLOGY | | 9 | | Important of coas aquafarm design | stal aquaculture – marine fishery resources – common fishing crafts and gears – and construction | C | O5 | | | TOTAL PERI | ODS | S: 45 | ## **TEXT BOOKS:** - 1. Recent advances in marine biotechnology volume 3-M. Fingerman , R . Nagabhushanam Mary Frances Thomson. - 2. Recent advances marine biotechnology volume 2 M.Fingerman, R.Nagabhushanam Mary - Frances Thomson # **COURSE OUTCOMES** Upon completion of the course, - CO1 Students will be able to study the interrelationship between marine organism and its environment - CO2 Students will be able to classify various marine organisms and their adaptations - CO3 Students will acquire knowledge about combating environmental issues using marine organisms as indicators - CO4 Students will be able to formulate medicinal components derived from marine organisms - CO5 Students will gain knowledge about design and construction of aquaculture and usage of its technology | | | | | | N | IAPPIN | IG OF | COs W | ITH PC | Os AND | PSOs | | | | | | |-----|-----|-----|-------------|-----|------|--------|-------|-------|--------|--------|------|------|------|---------|------|--| | COs | | | | | PROG | RAM | OUTCO | MES (| POs) | | | | | GRAM SP | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | CO1 | 1 | 1 | 1 1 1 2 1 1 | | | | | | | | | | | | | | | CO2 | 1 | 1 | - | 1 | 2 | 1 | 1 | - | - | - | - | - | - | - | - | | | CO3 | 2 | 2 | 2 | 2 | 2 | 1 | 3 | 1 | 1 | - | - | 1 | 2 | 3 | 2 | | | CO4 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | - | - | 1 | 2 | 2 | 2 | | | CO5 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | - | 1 | 1 | - | - | 1 | | # PROFESSIONAL ELECTIVE -II BT1005 ANIMAL BIOTECHNOLOGY C **OBJECTIVES:** To provide the fundamentals of animal cell culture, details of the diseases and therapy To offer the knowledge about the micromanipulation and transgenic animals **UNIT I: ANIMAL CELL CULTURE** 9 Introduction to basic tissue culture techniques; chemically defined and serum free media; animal cell cultures, their maintenance and preservation; various types of cultures suspension cultures, continuous flow cultures, immobilized cultures; somatic cell fusion; cell cultures as a source of CO1 valuable products; organ cultures. UNIT II: ANIMAL DISEASES AND THEIR DIAGNOSIS Bacterial and viral diseases in animals; monoclonal antibodies and their use in diagnosis; molecular CO₂ diagnostic techniques like PCR, in-situ hybridization; northern and southern blotting; RFLP.
UNIT III: THERAPY OF ANIMAL DISEASES 9 Recombinant cytokines and their use in the treatment of animal infections: monoclonal antibodies in therapy; vaccines and their applications in animal infections; gene therapy for animal diseases. CO₃ **UNIT IV: MICROMANIPULATION OF EMBRYO'S** What is micromanipulation technology; equipments used in micromanipulation; enrichment of x UNIT V: TRANSGENIC ANIMALS 9 CO₄ Concepts of transgenic animal technology; strategies for the production of transgenic animals and their importance in biotechnology; stem cell cultures in the production of transgenic animals CO5 **TOTAL PERIODS: 45** # **TEXT BOOKS:** - 1. Ranga M.M. Animal Biotechnology. Agrobios India Limited, 2002 - 2. Ramadass P, Meera Rani S. Text Book Of Animal Biotechnology. Akshara Printers, 1997. and y bearing sperms from semen samples of animals; artificial insemination and germ cell manipulations; in vitro fertilization and embryo transfer; micromanipulation technology and #### REFERENCE: 1. Masters J.R.W. Animal Cell Culture: Practical Approach. Oxford University Press.2000 #### **COURSE OUTCOMES** breeding of farm animals. - CO1 Understand the basic of animal Tissue culture, Maintenance and its preservation along with different culture techniques - CO2 Learn various viral and bacterial disease and different molecular biology Techniques. - CO3 Develop vaccines by understanding the Recombinant cytokines and their use in the treatment of animal infections. - **CO4** Learn about micromanipulation technology of Embryos for the enrichment of X and Y bearing sperms for artificial insemination and embryo transfer - Appreciate the concepts of transgenic animal technology and choose among the strategies for the production of transgenic animals | | | | | | M | APPING | G OF C | Os WI | тн ро | s AND F | PSOs | | | | | |-----|-----|---------------------|-----|-----|------|--------|--------|-------|-------|---------|------|------|------|-------|-------------------| | COs | | | | | PROG | RAM (| OUTCC | MES (| POs) | | | | | RAM S | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 2 | 1 2 3 3 1 2 1 3 2 2 | | | | | | | | | | | | | | | CO2 | 3 | 1 | 3 | 3 | 3 | 2 | 2 | - | - | - | - | 1 | 3 | 3 | 3 | | СОЗ | 2 | 1 | 1 | 1 | 3 | 2 | 2 | 1 | - | - | - | 1 | 2 | 3 | 2 | | CO4 | 3 | 1 | 1 | 2 | 3 | 3 | 2 | 2 | - | - | - | 1 | 2 | 3 | 3 | | CO5 | 2 | 1 | 2 | 2 | 3 | 3 | 3 | 2 | 1 | - | - | 1 | 3 | 2 | 3 | BT1006 SYSTEMS BIOLOGY L T P C 3 0 0 3 # **OBJECTIVES:** - To provide a quantitative basis, based on thermodynamics, enzyme kinetics, for the understanding of metabolic networks in single cells and at the organ level. - To enable the students to utilize the bioinformatic tools to design and develop biological complex data models. ## UNIT I: INTRODUCTION 9 Introduction to Systems Biology, Systems level understanding of biological systems. Basic concepts in Systems modeling: Model Scope, Model Statements, System state, Variables, parameters and constants, Model behavior, classification and steady state. Merits of computational modeling # UNIT II: KINETIC MODELING 9 Kinetic modeling of biochemical reactions, describing dynamics with ODEs, rate equations, deriving a rate equation, incorporating regulation of enzyme activity by effectors, E-cell platform and erythrocyte modeling. # UNIT III: FLUX BALANCE ANALYSIS 9 Introduction to Flux balance analysis, Construction of stoichiometric matrices, Constraint based models. Network basics, examples of mathematical reconstruction of transcriptional networks and signal transduction networks. ## UNIT IV: NETWORK MOTIFS AND MODELS 9 Network motifs, Feed forward loop network motif. Gene circuits, robustness of models, Chemotaxis model, Integration of data from multiple sources: Building genome scale models. #### UNIT V: **RESOURCES AND SBML** 9 Tools and databases for modeling: Pathway databases KEGG, EMP, Metacyc, Enzyme kinetics database BRENDA, Gene expression databases, Biomodels database, Basics of Systems Biology CO₅ Markup Language (SBML), SBML editors. **TOTAL PERIODS: 45** ## **TEXT BOOKS:** - EddaKlipp, Wolfram Liebermeister, ChristophWierling, Systems Biology a Textbook by Wiley-BlackWell 1. Publications (2009 Edition). - Uri Alon, An introduction to Systems Biology: Design Principles of Biological Circuits, (Chapman and Hall / CRC 2007 Edition) - EddaKlipp, Ralf Herwig, Axel kowald, ChristophWierling, Hans Lehrach, Systems Biology in practice: 3. concepts, implementation and application. (Wiley – VCH 2005) #### REFERENCES: - Foundations of Systems Biology Edited by Hiroaki Kitano (MIT Press) 1. - 2. Systems Biology: Definitions and perspectives by Lilia Albhergina (Springer Publications 2008) ## **COURSE OUTCOMES** - CO1 Understand basic, advanced principles of systems biology and biological networks - CO₂ Apply kinetics principles to develop systems level mathematical models in biology - CO₃ Learn stoichiometry and energetics of metabolism. - CO4 Understand networks behaviour and emergent properties of biological networks/ systems - CO₅ Apply computational based solutions for modeling biological perspectives | | | | | | MA | APPING | OF C | Os WI | TH PO | s AND P | SOs | | | | | |-----|-----|-----|---|---|------|--------|-------|-------|-------|---------|-----|---|---|-----------------|-------------------| | COs | | | | | PROG | RAM (| OUTCC | MES (| POs) | | | | | GRAM S
COMES | PECIFIC
(PSOs) | | | PO1 | PO2 | | | | | | | | | | | | | | | CO1 | 3 | 2 | 3 | 3 | - | 1 | - | 1 | - | - | - | - | 3 | - | - | | CO2 | 3 | 3 | 3 | 3 | 3 | - | - | - | - | - | - | - | 3 | 3 | 1 | | СОЗ | 3 | 2 | 2 | 3 | 1 | - | - | - | - | - | - | - | 3 | 1 | 1 | | CO4 | 3 | 3 | 3 | 3 | - | - | - | 2 | - | - | - | - | 3 | 2 | - | | CO5 | 3 | 3 | 3 | 3 | 3 | - | - | - | 1 | - | - | - | 3 | 2 | 3 | # BT1007 **BIOLOGICAL SPECTROSCOPY** C **OBJECTIVES:** To deliver the knowledge of spectroscopic techniques and its functions To provide the technical information of spectroscopy for biological applications. **UNIT I: OPTICAL ROTATORY DISPERSION** 9 Polarized light - optical rotation - circular dichroism - circular dichroism of nucleic acids and CO1 proteins. UNIT II: TYPES OF NUCLEAR MAGNETIC RESONANCE 9 Chemical shifts – spin – spin coupling – relaxation mechanisms – nuclear overhauser effect – ESR multidimensional nmr spectroscopy - determination of macromolecular structure by NMR -CO₂ magnetic resonance imaging. **UNIT III:** TYPES OF MASS SPECTROMETRY 9 Introduction on sources sample introduction – mass analyzers and ion detectors – bimolecular mass spectrometry - peptide and protein analysis - carbohydrates and small molecules - specific CO₃ applications. **UNIT IV:** X-RAY DIFFRACTION 9 Scattering by x- rays – diffraction by a crystal – measuring diffraction pattern – Bragg reflection – unit cell – phase problem – anomalous diffraction – determination of crystal structure – electron CO₄ and neutron diffraction. # UNIT V: SPECIAL TOPICS AND APPLICATIONS • Electron microscopy – transmission and scanning electron microscopy – scanning tunnelling and atomic force microscopy – combinatorial chemistry and high throughput screening methods. CO₅ **TOTAL PERIODS: 45** #### **TEXT BOOKS:** 1. Banwell, Colin N. and E.M. McCash. "Fundamentals of Molecular Spectroscopy" 4th Edition, Tata McGraw-Hill, 2017. - 2. Aruldas, G. "Molecular Structure and Spectroscopy". 2nd Edition, Prentice Hall of India, 2007. - 3. Pavia, D.L., G.M. Lampman and G.S. Kriz. "Introduction to Spectroscopy:" 3rd Edition, Thomson, Brooks/ Cole, 2001. - 4. Williams, Dudley H. and Ian Fleming. "Spectroscopic Methods in Organic Chemistry". 6th Edition, Tata McGraw-Hill, 2007. #### REFERENCES: - Siuzdak, Gary. "Mass Spectrometry for Biotechnology". Academic Press / Elsevier, 1996. - 2. Hammes, Gordon G. "Spectroscopy for the Biological Sciences". John Wiley, 2005. - 3. Campbell I.D and Dwek R.A., "Biological Spectroscopy", Benjamin Cummins and Company, 1986. - 4. Atkins P.W., "Physical Chemistry", 10th Edition, Oxford University Press India, 2014. #### **COURSE OUTCOMES** Upon completion of the course, the students will be able to **CO1** Know the basics and biological applications of optical rotatory dispersion methods. CO₂ Predict the structure of biological macromolecule using nuclear magnetic resonance spectroscopy. CO₃ Analyze the peptide and protein molecules by mass spectrometry. CO₄ Understand the principle of X-ray diffraction and its applications. CO₅ Gain knowledge on advanced microscopic techniques and its applications. | | | | | | M | APPIN | G OF C | Os WI | TH PO | s AND F | PSOs | | | | | |-----|-----|-----------|-----|-----|------|-------|--------|-------|-------|---------|-------------|------|------|-------|-------------------| | COs | | | | | PROG | RAM (| OUTCO | MES (| POs) | | | | | RAM S | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 2 3 3 2 3 | | | | | | | | | | | | | | | CO2 | 3 | - | - | 2 | 3 | - | - | - | - | - | - | 2 | 3 | 2 | 3 | | СОЗ | 3 | - | - | 2 | 3 | - | - | - | - | - | - | 2 | 3 | 2 | 3 | | CO4 | 3 | - | - | 2 | 3 | - | - | - | - | - | - | 2 | 3 | 2 | 3 | | CO5 | 3 | - | - | 1 | 3 | - | - | - | - | - | - | 2 | 3 | 2 | 3 | **GE1001** #### **INTELLECTUAL PROPERTY RIGHTS** C 3 ## **OBJECTIVES:** - To introduce fundamental aspects of Intellectual Property Rights (IPR) and its components. - To disseminate knowledge on patents, patent regime in India and abroad and registration aspects - To disseminate knowledge on copyrights, trademarks and registration aspects - To disseminate knowledge on Design, Geographical Indication (GI), Plant Variety and Layout Design Protection and their registration aspects - To aware about enforcement in IPR and government steps in fostering IPR #### UNIT I: INTRODUCTION 9 Introduction to IPRs: Basic
concepts and need for Intellectual Property, Patents, Copyrights, Geographical Indications, IPR in India and Abroad – Genesis and Development – The way from WTO to WIPO -TRIPS, Nature of Intellectual Property, Industrial Property, Technological Research, Inventions and Innovations – Important examples of IPR. CO₁ #### **REGISTRATION OF IPRs UNIT II:** 10 Meaning and practical aspects of registration of Copy Rights, Trademarks, Patents, Geographical Indications, Trade Secrets and Industrial Design registration in India and Abroad CO₂ #### UNIT III: AGREEMENTS AND LEGISLATIONS 10 International Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agreement, Patent Act of India, Patent Amendment Act, Design Act, Trademark Act, Geographical Indication Act. CO₃ ## UNIT IV: DIGITAL PRODUCTS AND LAW CO4 Digital Innovations and Developments as Knowledge Assets – IP Laws, Cyber Law and Digital Content Protection – Unfair Competition – Meaning and Relationship between Unfair Competition and IP Laws – Case Studies. UNIT V: ENFORCEMENT OF IPRs 7 Infringement of IPRs, Enforcement Measures, Emerging issues – Case Studies. CO₅ **TOTAL PERIODS: 45** ## **TEXT BOOKS:** - 1. V. ScopleVinod, Managing Intellectual Property, Prentice Hall of India pvt Ltd,2014. - 2. S. V. Satakar, "Intellectual Property Rights and Copy Rights, EssEss Publications, New Delhi, 2003. - 3. Ahuja, V K, Law relating to Intellectual Property Rights. India, LexisNexis, 2017. ## **REFERENCES:** - 1. Deborah E. Bouchoux, "Intellectual Property: The Law of Trademarks, Copyrights, Patents and Trade Secrets", Cengage Learning, Third Edition, 2017. - 2. PrabuddhaGanguli, "Intellectual Property Rights: Unleashing the Knowledge Economy", McGraw Hill Education, 2011. - 3. Edited by Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar Publishing Ltd., 2013. ## **COURSE OUTCOMES** - **CO1** Get an adequate knowledge on patent and copyright for their innovative research works - **CO2** Get idea about the registration process of IPR - CO3 Study various agreements and Acts regarding IPR - CO4 Inculcate the knowledge on innovations, developments and IP laws - **CO5** Gain awareness about the knowledge of enforcement and current issues | | | | | | MA | PPING | OF C | Os WI | тн ро | s AND F | PSOs | | | | | |-----|-----|-----|-----|-----|------|-------|-------|--------|-------|---------|-------------|------|------|--------|-------------------| | COs | | | | | PROG | RAM | OUTCO | OMES (| (POs) | | | | | RAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 2 | 2 | - | | CO2 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 2 | - | - | | CO3 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 2 | - | - | | CO4 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 2 | - | - | | CO5 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 2 | - | - | ## PROFESSIONAL ELECTIVE - III BT1009 **CANCER BIOLOGY** C **OBJECTIVES:** To enable the students to understand Basic biology of cancer Impact of antibodies against cancer in the human body leading to more effective treatments Enhanced immunology based detection methods and imaging technique Development of cell based and cytokine based immunotherapy against cancer. UNIT I: **FUNDAMENTALS OF CANCER BIOLOGY** 9 Regulation of cell cycle, mutations that cause changes in signal molecules, effects on receptor, signal switches, tumour suppressor genes, modulation of cell cycle in cancer, different forms of CO1 cancers, diet and cancer. Cancer screening and early detection, Detection using biochemical assays, tumor markers, molecular tools for early diagnosis of cancer. UNIT II: PRINCIPLES OF CARCINOGENESIS 9 Theory of carcinogenesis, Chemical carcinogenesis, metabolism of carcinogenesis, principles of CO₂ physical carcinogenesis, x-ray radiation-mechanisms of radiation carcinogenesis. **UNIT III:** PRINCIPLES OF MOLECULAR CELL BIOLOGY OF CANCER 9 Signal targets and cancer, activation of kinases; Oncogenes, identification of oncogenes, retroviruses and oncogenes, detection of oncogenes. Oncogenes/proto oncogene activity. Growth CO₃ factors related to transformation. Telomerases. **UNIT IV:** PRINCIPLES OF CANCER METASTASIS 9 Clinical significances of invasion, heterogeneity of metastatic phenotype, metastatic cascade, CO₄ basement membrane disruption, three step theory of invasion, proteinases and tumour cell invasion. UNIT V: **NEW MOLECULES FOR CANCER THERAPY** 9 Different forms of therapy, chemotherapy, radiation therapy, detection of cancers, prediction of aggressiveness of cancer, advances in cancer detection. Use of signal targets towards therapy of CO₅ cancer; Gene therapy. **TOTAL PERIODS: 45 TEXT BOOKS:** Weinberg, R.A. "The Biology of Cancer" Garland Science, 2007 1. McDonald, F etal., "Molecular Biology of Cancer" IInd Edition. Taylor & Francis, 2004. 2. **REFERENCES:** King, Roger J.B. "Cancer Biology" Addison Wesley Longman, 1996. 1. 2. Ruddon, Raymond W. "Cancer Biology" IIIrd Edition. Oxford University Press, 1995. ## **COURSE OUTCOMES** Upon completion of the course, the students will be able to - CO1 Understand the fundamentals of cancer biology such as cell cycle, molecular diagnostic assays and molecular markers. - CO2 Understand the basic principles involved in creating carcinogenesis and mechanism of carcinogenesis. - CO3 Have depth knowledge in Oncogenic genes molecular mechanism and importance of growth factors - **CO4** Have awareness on cancer metastasis and its clinical significance - CO5 Have awareness on medical applications of cytokines and immune cells against cancer | | | | | | M | APPIN | G OF C | COs W | ITH PO | s AND I | PSOs | | | | | |-----|-----|-------------|---|---|------|-------|--------|-------|--------|---------|------|---|---|-----------------|-------------------| | COs | | | | | PROG | RAM | OUTCO | MES (| POs) | | | | | GRAM S
COMES | PECIFIC
(PSOs) | | COS | PO1 | PO2 | PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 | | | | | | | | | | | | | | CO1 | 1 | 1 2 3 3 2 2 | | | | | | | | | | | | 2 | | | CO2 | 1 | 2 | 1 | 1 | 3 | - | - | 3 | - | - | ı | ı | 1 | 2 | 3 | | CO3 | 1 | - | 3 | 2 | 3 | - | - | - | - | - | - | - | 2 | 2 | 3 | | CO4 | 1 | 1 | 1 | 3 | 3 | - | - | 3 | - | - | - | - | 2 | 3 | 2 | | CO5 | 1 | 1 | 3 | 1 | 3 | - | - | 1 | - | - | - | - | 3 | 2 | 1 | #### BT1010 #### **BIOPHARMACEUTICAL TECHNOLOGY** L T P C 3 0 0 3 #### **OBJECTIVES:** - The aim of the course is to give strong foundation and advanced information on biopharmaceutical aspects in relation to drug development. - This course provides core responsibilities for the development and monitoring of the drug and the preparation of medicines according to the norms. - To gain knowledge in physicochemical properties, pharmacology and the formulation of commonly used biopharmaceuticals. # UNIT I: INTRODUCTION 9 Pharmaceutical industry & development of drugs; types of therapeutic agents and their uses; economics and regulatory aspects. CO1 ## UNIT II: DRUG ACTION, METABOLISM AND PHARMACOKINETICS 9 Mechanism of drug action; physico-chemical principles of drug metabolism; radioactivity; pharmacokinetics. CO₂ #### UNIT III: MANUFACTURE OF DRUGS, PROCESS AND APPLICATIONS 9 Types of reaction process and special requirements for bulk drug manufacture. CO₃ #### UNIT IV: PRINCIPLES OF DRUG MANUFACTURE Compressed tablets; dry and wet granulation; slugging or direct compression; tablet presses; coating of tablets; capsule preparation; oval liquids – vegetable drugs – topical applications; preservation of drugs; analytical methods and other tests used in drug manufacture; packing techniques; quality management; GMP. CO₄ #### UNIT V: **BIOPHARMACEUTICALS** Various categories of therapeutics like vitamins, laxatives, analgesics, contraceptives, antibiotics, hormones and biologicals. CO₅ #### **TEXT BOOKS:** **TOTAL PERIODS: 45** 1. Finkel, Richard, etal., "Lippincott's Illustrated Reviews Pharmacology" IVth Edition. Wolters Kluwer / Lippincott Williams & Wilkins, 2009. #### REFERENCES: - 1. Gareth Thomas. Medicinal Chemistry. An introduction. John Wiley. 2000. - 2. Katzung B.G. Basic and Clinical Pharmacology, Prentice Hall of Intl. 1995. - 3. Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Eleventh Edition .Loyd V. Allen, Jr. , Wolters Kluwer, 2017. #### **COURSE OUTCOMES** Upon completion of the course - Students would have a fundamental knowledge about the various phases and the regulatory CO1 aspects involved in the drug development. - Students would have gained knowledge about mechanism of action of drug on a human body and CO₂ how a body responds to a drug. - Students would have developed knowledge about chemical reactions and processes involved in CO₃ manufacturing a drug product. - CO4 Students get familiar about the preparation of various dosage forms of drug and its quality control. - CO₅ Student would acquire knowledge on different types of biopharmaceuticals. | | | | | | M | APPING | G OF C | Os Wi | тн ро | s AND F | SOs | | | | | |-----|-----|-----|-----|-----|------|--------|--------|-------|-------|---------|------|------|------|------------------|------| | COs | | | | | PROG | RAM | OUTCO | MES (| POs) | | | | | GRAM SI
COMES | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 1 | - | 2 | 1 | 2 | 2 | 1 | 1 | - | - | - | 1 | - | 2 | - | | CO2 | 2 | - | 2 | 1 | - | 1 | 1 | 1 | - | - | - | 1 | - | - | - | | CO3 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | - | - | 1 | - | 2 | - | - | | CO4 | 1 | 1 | 1 | 1 | 3 | 1 | - | 1 | - | - | - | - | - | - | 2 | | CO5 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | - | - | - | - | 2 | - | - | # BT1011 **MOLECULAR PATHOGENESIS OF DISEASES** C **OBJECTIVES:** To enable the students To
understand about the microbial toxins and modern molecular pathogenesis To know about the host pathogen interaction and identifying virulence factors To control pathogens by modern approaches. UNIT I: **OVERVIEW** 5 Historical perspective - discovery of microscope, Louis Pasteur's contributions, Robert Koch's postulates, early discoveries of microbial toxins, toxic assays, vaccines, antibiotics and birth of CO₁ molecular genetics and modern molecular pathogenesis studies, Various pathogen types and modes of entry. UNIT II: **HOST-DEFENSE AGAINST PATHOGENS AND PATHOGENIC** 8 **STRATEGIES** Attributes & components of microbial pathogenesis, Host defense: skin, mucosa, cilia, secretions, physical movements, limitation of free iron, antimicrobial compounds, mechanism of killing by CO₂ humoral and cellular defense mechanisms, complements, inflammation process, general disease symptoms. Pathogenic adaptations to overcome the above defenses. **MOLECULAR PATHOGENESIS (WITH SPECIFIC EXAMPLES) UNIT III:** 16 Virulence, virulence factors, virulence- associated factors and virulence lifestyle factors, molecular genetics and gene regulation in virulence of pathogens, Vibrio Cholerae: Cholera toxin, coregulated pili, filamentous phage, survival E.coli pathogens: EnterotoxigenicE.coli (ETEC), labile & stable toxins, Entero- pathogenic E.coli (EPEC), type III secretion, cytoskeletal changes, intimate attachment; EnterohaemerrohogicE.coli (EHEC), mechanism of bloody diarrhoea and Hemolytic Uremic Syndrome, EnteroaggregativeE.coli (EAEC). Shigella: Entry, macrophage apoptosis, CO₃ induction of macropinocytosis, uptake by epithelial cells, intracellular spread, inflammatory response, tissue damage Plasmodium: Life cycle, erythrocyte stages, transport mechanism and processes to support the rapidly growing schizont, parasitiparous vacuoles, and knob protein transport, Antimalarials based on transport processes. Influenza virus: Intracellular stages, Neuraminidase & Haemagglutinin in entry, M1 & M2 proteins in assembly and disassembly, action of amantidine. **UNIT IV: EXPERIMENTAL STUDIES ON HOST-PATHOGEN INTERACTIONS** 8 Virulence assays: adherence, invasion, cytopathic, cytotoxic effects. Criteria & tests in identifying virulence factors, attenuated mutants, molecular characterization of virulence factors, signal CO₄ transduction & host responses **UNIT V:** APPROACHES TO CONTROL PATHOGENS 8 Classical approaches based on serotyping. Modern diagnosis based on highly conserved virulence factors, immune & DNA-based techniques. New therapeutic strategies based on recent findings CO₅ on molecular pathogenesis of a variety of pathogens, Vaccines - DNA, subunit and cocktail vaccines. **TOTAL PERIODS: 45** #### REFERENCES: - 1. Iglewski B.H and Clark V.L "Molecular basis of Bacterial Pathogenesis", Academic Press, 1990. - 2. Peter Williams, Julian Ketley & George Salmond, "Methods in Microbiology: Bacterial Pathogenesis, Vol. 27", Academic Press, 1998. - 3. Recent reviews in Infect. Immun., Mol. Microbiol., Biochem. J., EMBO etc. - 4. Nester, Anderson, Roberts, Pearsall, Nester, "Microbiology: A Human Perspective", McGraw Hill, 3rd Edition, 2001. - 5. Eduardo A. Groisman, Principles of Bacterial Pathogenesis, Academic Press, 2001. # **COURSE OUTCOMES** Upon completion of the course, the students will be able to - Gain knowledge in understanding the basic about the historical perspective in molecular Pathogenesis and various pathogen types and mode of entry - CO2 Develop knowledge in host-defense mechanism against pathogen and pathogenic strategy - CO3 Gain knowledge in various bacterial and viral pathogens along with their virulence factor and gene regulation - CO4 Develop knowledge in various virulence assay and understand molecular characterization of virulence factor - Acquire knowledge to control the pathogens and to diagnose various pathogens in immunological and molecular level | | | | | | MA | APPING | OF C | Os WI | TH PO | s AND F | SOs | | | | | |-----|-----|-----------|-----|-----|------|--------|-------|-------|-------|---------|------|------|------|--------|------| | COs | | | | | PROG | RAMC | OUTCO | MES (| POs) | | | | | GRAM S | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 1 | 1 1 2 1 - | | | | | | | | | | | | | | | CO2 | 1 | - | - | - | - | - | - | - | - | - | - | 1 | 2 | 1 | - | | СОЗ | 1 | - | - | - | - | 1 | - | - | - | - | - | 1 | 2 | 2 | - | | CO4 | - | 2 | 2 | 1 | 1 | 1 | - | - | - | - | - | 1 | 2 | 2 | 2 | | CO5 | 1 | 2 | 2 | 2 | 2 | 2 | ı | - | ı | - | - | 2 | 2 | 2 | 2 | BT1012 #### **BIO-ENTREPRENEURSHIP** L T P C 3 0 0 3 #### **OBJECTIVES:** - To learn the basics of entrepreneur skills and apply in developing business plan - To identify suitable locations and market in the business - To understand the basics of finance and its management, legal, social aspect of business UNIT I: 9 Should You Become an Entrepreneur? What Skills Do Entrepreneurs Need?, Identify and Meet a Market Need, Entrepreneurs in a Market Economy, Select a Type of Ownership 122 UNIT II: 9 Develop a Business Plan CO2 UNIT III: Choose Your Location and Set Up for Business, Market Your Business, Hire and Manage a Staff CO3 UNIT IV: Finance, Protect and Insure Your Business, Record Keeping and Accounting, Financial Management UNIT V: Meet Your Legal, Ethical, Social Obligations, Growth in Today's Marketplace. **TOTAL PERIODS: 45** #### **TEXT BOOKS:** Entrepreneurship Ideas in Action—South-Western, 2000. #### **REFERENCES:** Handbook of Bioentrepreneurship: 4 (International Handbook Series on Entrepreneurship), by Holger Patzelt , Thomas Brenner ## **COURSE OUTCOMES** Upon completion of the course, - CO1 Students will be able to understand the fundamentals of Entrepreneurship and will be able to understand and analyze Market. - **CO2** Students will be able to plan and develop a Business plan. - CO3 Students will be able to learn, understand setting up a business and also the basics of leadership quality, customer relationship and team work. - **CO4** Students will be able to learn, understand, calculate and analyze finance. - **CO5** Students will be able to define and apply the ethical rights and also forecast and estimate the global issues. | | | | | | MA | PPING | OF C | Os WIT | TH POS | s AND P | SOs | | | | | |-----|-----|-----------------------------|---|---|-------|-------|------|--------|--------|---------|-----|---|---|-------------------|---| | COs | | | | i | PROGI | RAM O | UTCO | MES (F | POs) | | | | | RAM SP
COMES (| | | | PO1 | | | | | | | | | | | | | | | | CO1 | - | - 1 1 - 2 - 3 2 2 2 1 1 1 - | | | | | | | | | | | | | | | CO2 | - | - | - | 1 | - | 1 | - | 2 | 2 | 3 | 1 | 2 | - | 2 | - | | СОЗ | - | - | - | - | - | 3 | 2 | 2 | 3 | 3 | 3 | 2 | 3 | - | - | | CO4 | - | - | - | - | - | 1 | 1 | 2 | 1 | 2 | 3 | 2 | - | - | 2 | | CO5 | - | - | - | - | - | 3 | 3 | 3 | 1 | 1 | 2 | 2 | 1 | - | 2 | # **PROFESSIONAL ELECTIVE - IV** | BT1013 | BIOETHICS | L
3 | T
0 | P
0 | C
3 | |---|--
--|------------------------------------|--------|--------| | developm | se will provide Fundamental ethical to Advanced clinical trial mana
nent and trial planning; Project management in clinical trials; Conse
ssurance and governance. | | | uding | g drug | | UNIT I: | INTRODUCTION TO CLINICAL TRIALS | | | | 9 | | and reviewing cl
directives and le | clinical trials; Basic statistics for clinical trials; Clinical trials in practice inical trials; Legislation and good clinical practice - overview of the gislation governing clinical trials in the 21stcentury; International per International Committee on Harmonisation (ICH)-GCP. | Euro | pean | C | :01 | | UNIT II: | REGULATIONS OF CLINICAL TRIALS | Dogu | lotoni | | 9 | | approvals for clin | ent and trial planning - pre-study requirements for clinical trials; nical trials; Consort statement; Trial responsibilities and protocols of investigators, sponsors and others; Requirements of clinical trials rements for investigational medicinal products. | - roles | and | C | O2 | | UNIT III: | MANAGEMENT AND ETHICS OF CLINICAL TRIALS | | | | 9 | | trial managemer
ethics; Ethical iss
system including
conduct; Introduc | ment in clinical trials - principles of project management; Applicationt; Risk assessment; Research ethics and Bioethics - Principles uses in clinical trials; Use of humans in Scientific Experiments; Ethical ahistorical overview; the informed consent; Introduction to ethical ction to animal ethics; Animal rights and use of animals in the advange; Introduction to laws and regulation regarding use of animals in | of resolution of commercial comme | earch
nittee
s and
ent of | C | CO3 | | UNIT IV: | INFORMED CONSENT | | | | 9 | | protection; Legis | a protection- the principles of informed consent; Consent processes; lation and its application; Data management – Introduction to trial macuments; Data management. | | iles | C | 04 | | UNIT V: | QUALITY CONTROL AND GUIDELINES | | | | 9 | | Inspections; Pha | ee and governance - quality control in clinical trials; Monitoring and aumacovigilance; Research governance; Trial closure and pitfalls-trial gal requirements; Common pitfalls in clinical trial management. | | re; | C | CO5 | # **REFERENCES:** **TOTAL PERIODS: 45** Lee, Chi-Jen; etal., "Clinical Trials or Drugs and Biopharmaceuticals." CRC / Taylor &Francis,2011. Matoren, Gary M. "The Clinical Research Process in the Pharmaceutical Industry." Marcel Dekker,1984. ## **COURSE OUTCOMES** Upon completion of the course, the students will be able to - **CO1** Gain knowledge on the fundamental aspects of clinical trials, legal standards and GCP. - **CO2** Acquire knowledge on the regulatory approvals and legislative requirements of clinical trials. - CO3 Understand the principles of project management, ethical system in clinical trials and research. - **CO4** Understand the perspectives of informed consent, data protection and management systems. - CO5 Understand and appreciate the procedures of quality control assurance & governance in clinical trials. | | | | | | M | APPIN | G OF C | COs W | TH PC | s AND I | PSOs | | | | | |-----|-----|-----|-----|-----|------|-------|--------|-------|-------|---------|------|------|------|---------|-------------------| | COs | | | | | PROG | RAM | OUTCO | MES (| POs) | | | | | GRAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | 1 | 2 | 2 | - | - | - | 2 | 2 | 1 | 2 | 2 | 1 | 2 | - | | CO2 | - | 1 | 2 | 2 | 1 | - | - | 2 | 1 | 2 | 1 | 1 | 1 | - | - | | CO3 | | - | - | 1 | - | 2 | - | 3 | 2 | 1 | 2 | 1 | - | 1 | - | | CO4 | - | - | - | 1 | - | 1 | - | 2 | 2 | 1 | 2 | 1 | - | - | 2 | | CO5 | - | - | - | 1 | 1 | 1 | - | 2 | 2 | 2 | 2 | 2 | - | - | 1 | **GE1004** ## **FUNDAMENTALS OF NANOSCIENCE** L T P C 3 0 0 3 #### **OBJECTIVES:** • To learn about basis of nanomaterial science, preparation method, types and application ## UNIT I: INTRODUCTION 8 Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- quantum dots, nano wires-ultra-thin films multi layered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only). CO1 ## UNIT II: GENERAL METHODS OF PREPARATION 9 Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE. CO2 #### UNIT III: NANOMATERIALS 12 Nanoforms of Carbon - Buckminster fullerene- graphene and carbon nanotube, Single wall carbon Nanotubes (SWCNT) and Multi wall carbon nanotubes (MWCNT)- methods of synthesis(arcgrowth, laser ablation, CVD routes, Plasma CVD), structure-property Relationships applications-Nanometal oxides-ZnO, TiO2,MgO, ZrO2, NiO, nanoalumina, CaO, AgTiO2, Ferrites, Nanoclays functionalization and applications-Quantum wires, Quantum dots-preparation, properties and applications. CO3 # UNIT IV: CHARACTERIZATION TECHNIQUES CO4 Nano InfoTech: Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nano biotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)- Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery. UNIT V: APPLICATIONS _ CO₅ NanoInfoTech: Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nanobiotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)- Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery. **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. A.S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996. - 2. N John Dinardo, "Nanoscale Charecterisation of surfaces & Interfaces", 2nd edition, Weinheim Cambridge, Wiley-VCH, 2000. #### **REFERENCES:** - 1. G Timp, "Nanotechnology", AIP press/Springer, 1999. - 2. Akhlesh Lakhtakia, "The Hand Book of Nano Technology, Nanometer Structure, Theory, Modeling and Simulations". Prentice-Hall of India (P) Ltd, New Delhi, 2007. ## **COURSE OUTCOMES** - CO1 Understand the concept of Nano scale Science and Technology and various types of nano materials. - **CO2** Acquire knowledge in general methods of preparation of nano materials. - CO3 Understand the Nano forms of Carbon and methods of synthesis - **CO4** Acquire knowledge in characteristic nanomaterial on various technique. - **CO5** Gain knowledge on various application of nano materials. | | | | | | M | IAPPIN | IG OF | COs W | /ITH P | Os AND | PSOs | | | | | |-----|-----|-----|-----|-----|------|--------|-------|-------|--------|--------|------|------|------|---------|------| | COs | | | | | PROG | RAM | OUTCO | MES (| (POs) | | | | | GRAM SI | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 2 | 2 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 3 | 2 | 1 | 1 | | CO2 | 3 | 2 | 3 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 3 | 2 | 3 | 3 | | CO3 | 3 | 3 | 3 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 3 | 3 | 3 | 3 | | CO4 | 3 | 3 | 3 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 3 | 3 | 3 | 3 | | CO5 | 3 | 2 | 3 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 3 | 3 | 3 | 3 | ## BT1015 ## **GENOMICS AND PROTEOMICS** C 3 #### **OBJECTIVES:** To provide the
students a broader knowledge on the structure and function of genomes, the technologies developed for genomics, functional genomics and proteomics. #### UNIT I: INTRODUCTION 9 Introduction to genome, transcriptome, and proteome; Overview of genomes of bacteria, archae, CO1 and eukaryote; Genomes of organelles. #### UNIT II: GENOME MAPPING AND SEQUENCING 9 Genetic and physical mapping, Linkage analysis, RFLP, SNP, SSLP, Restriction mapping, STS mapping, FISH, Top-down and bottom-up sequencing strategies. Whole genome sequencing, Gap CO₂ closure, Pooling strategies. #### **UNIT III: FUNCTIONAL GENOMICS** 9 Genome annotation, ORF and functional prediction, Gene finding, Substractive DNA library screening, Differential display and Representational difference analysis, SAGE, TOGA, Introduction to DNA microarray. CO₃ #### **UNIT IV: TECHNIQUES IN PROTEOMICS** 9 In-vitro and in vivo-labeling of proteins, One and two-dimensional gel electrophoresis, Detection of proteins on SDS gels, Protein cleavage, Edman protein microsequencing, Mass spectrometryprinciples of MALDI-TOF, Peptide mass fingerprinting. CO₄ #### UNIT V: **PROTEIN PROFILING** 9 Large-scale protein profiling using proteomics, Post-translational modifications, Phosphoprotein CO₅ and glycoprotein analyses; Analysis of protein-protein interactions, Protein microarrays. **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. Suhai, Sandor "Genomics and Proteomics: Functional and Computational Aspects". Springer, 2000 - 2. Pennington, S.R. and M.J. Dunn "Proteomics: From Protein Sequence to Function". VivaBooks Pvt. Ltd., 2002. - 3. O'Connor, C.D. and B.D.Hames. "Proteomics". Scion Publishing, 2008. - Primrose, S.B. and Twyman. "Principles of Genome Analysis and Genomics". 7th Edition, Blackwell Publishing, 2006 ## **REFERENCES:** - Cantor, Charles R. and Cassandra L. Smith. "Genomics: The Science and Technology Behind the 1. Human Genome Project". John Wiley & Sons, 1999. - 2. Liebler, R.C. "Introduction to Proteomics". Humana Press, 2002. - 3. Hunt. Stephen P. and Frederick J. Livesev. "Functional Genomics". Oxford University Press, 2000. - 4. Conard, Edward. "Genomics". Apple Academics, 2010 # **COURSE OUTCOMES** - **CO1** Understand the fundamentals of Genomics and Proteomics - **CO2** Acquire knowledge on various genome mapping and sequencing methods and genomic markers - CO3 Gain knowledge about microarray technology and methods used in functional genomics - CO4 Gain knowledge about current techniques involved in protein analysis - **CO5** Acquire knowledge on various techniques used for protein filing and post translational modification | | MAPPING OF COs WITH POS AND PSOS | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|-----|------|-------|-------|-------|------|------|------|------|------|---------|------| | COs | | | | | PROG | RAM C | OUTCO | MES (| POs) | | | | | GRAM SI | | | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 1 | 1 | 2 | | - | - | - | 1 | - | - | - | 3 | 2 | 1 | | CO2 | 2 | 2 | 1 | - | 3 | , | , | , | , | - | - | - | 2 | 2 | 2 | | СОЗ | 3 | 1 | 2 | 1 | 3 | - | - | - | - | - | - | - | 2 | 1 | 3 | | CO4 | 1 | 2 | 1 | - | 3 | - | - | - | - | - | - | - | 2 | 2 | 3 | | CO5 | 2 | 1 | 1 | 2 | 1 | • | • | - | - | - | - | - | 2 | 2 | 2 | | BT1016 | LIFESTYLE DISEASES | L
3 | T
0 | P
0 | C
3 | |-----------|--|--------|--------|--------|--------| | UNIT I: | INTRODUCTION | | | | 9 | | | Definition; Risk factors – Eating, smoking, drinking, stress, physical
Obesity, diabetes, cardiovascular diseases, respiratory diseases,
and exercise. | | | С | 01 | | UNIT II: | CANCER | · Cai | 1000 | | 9 | | • • • | er, Mouth cancer, Skin cancer, Cervical cancer, Carcinoma oesophagus;
Piagnosis – Biomarkers, Treatment | , Cat | 1262 | С | 02 | | UNIT III: | CARDIOVASCULAR DISEASES | | | | 9 | | • | sclerosis – Coronary artery disease; Causes -Fat and lipids, Alcohol ocardiograph, echocardiograph, Treatment, Exercise and Cardiac rehab | | | С | O3 | | UNIT IV: | DIABETES AND OBESITY | | | | 9 | | * 1 | mellitus; Blood glucose regulation; Complications of diabetes – Paediat γ – Weight control and BMI | ric a | nd | С | 04 | ## UNIT V: RESPIRATORY DISEASES CO5 Chronic lung disease, Asthma, COPD; Causes - Breathing pattern (Nasal vs mouth), Smoking – Diagnosis - Pulmonary function testing TOTAL PERIODS: 45 #### **TEXT BOOKS:** - 1. R.Kumar&Meenal Kumar, "Guide to Prevention of Lifestyle Diseases", Deep & Deep Publications, 2003 - 2. Gary Eggar et al, "Lifestyle Medicine", 3rd Edition, Academic Press, 2017 #### **REFERENCES:** - 1. James M.R, "Lifestyle Medicine", 2nd Edition, CRC Press, 2013 - 2. Akira Miyazaki et al, "New Frontiers in Lifestyle-Related Disease", Springer, 2008 ## **COURSE OUTCOME** Upon completion of the course, - CO1 Students would have a fundamental knowledge about the various diseases related to their lifestyle and methods to prevent through diet and exercise - CO2 After completing this course, students get familiar about the various forms of cancer and methods to diagnose and treat - CO3 Students will be able to gain extensive knowledge on cardiovascular diseases and know the usage of diagnose these diseases - CO4 Students would have gained knowledge and the various types of diabetes and know about the consequence of obesity - At the end of the course the student would acquire knowledge on respiratory diseases and the effect of smoking and tobacco usage | | | | | | M | APPIN | G OF (| COs W | ITH PC |)s AND | PSOs | | | | | |-----|-----|---|---|---|------|-------|--------|-------|--------|--------|------|---|---|--------|-------------------| | COs | | | | | PROG | RAM C | OUTCO | MES (| POs) | | | | | GRAM S | PECIFIC
(PSOs) | | | PO1 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PS0 | | | | | | | | | | | | PSO2 | PSO3 | | CO1 | 2 | 1 | - | 1 | - | 1 | - | 2 | - | 1 | - | 2 | 1 | - | 1 | | CO2 | 2 | 1 | - | - | - | - | - | 1 | - | - | - | 1 | 2 | - | 2 | | СОЗ | 1 | 1 | - | - | - | 1 | - | 1 | - | 1 | - | 1 | 2 | - | 2 | | CO4 | 2 | 1 | - | - | - | 1 | - | 2 | - | 1 | - | 2 | 1 | - | 2 | | CO5 | 2 | 1 | - | - | - | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | - | 1 | # **PROFESSIONAL ELECTIVE - V** BT1017 **Plant Biotechnology** C **OBJECTIVES:** To give the details of plant cells and its functions To provide the basics of Agrobacterium and applications of plant biotechnology UNIT I: ORGANIZATION OF GENETIC MATERIAL 9 Genetic material of plant cells – nucleosome structure and its biological significance; junk and CO1 repeat sequences; outline of transcription and translation. UNIT II: **CHLOROPLAST & MITOCHONDRIA** 9 Structure, function and genetic material; rubisco synthesis and assembly, coordination, regulation and transport of proteins. Mitochondria: Genome, cytoplasmic male sterility and import CO₂ of proteins. UNIT III: NITROGEN FIXATION 9 Nitrogen cycle, importance of symbiotic and nonsymbiotic organisms, nodulation-bacteroids, nod CO₃ genes, nod factors, Nitrogenase activity, and nif genes. **UNIT IV: AGROBACTERIUM & VIRAL VECTORS** 9 Pathogenesis, crown gall disease, genes involved in the pathogenesis, Ti plasmid - t-DNA, importance in genetic engineering. Viral Vectors: Gemini virus, cauliflower mosaic virus, viral **CO4** vectors and its benefits. UNIT V: APPLICATION OF PLANT BIOTECHNOLOGY Outline of plant tissue culture, transgenic plants, herbicide and pest resistant plants, molecular CO₅ pharming, therapeutic products. **TOTAL PERIODS: 45 TEXT BOOKS:** 1. Gamburg OL, Philips GC, Plant Tissue & Organ Culture fundamental Methods, Narosa Publications. 2. Singh BD. Text Book of Biotechnology, Kalyani Publishers. 1998 **REFERENCES:** 1. Heldt HW. Plant Biochemistry & Molecular Biology, Oxford University Press. 1997. 2. Ignacimuthu .S, Applied Plant Biotechnology, Tata McGraw Hill. 1996. #### **COURSE OUTCOMES** - **CO1** To understand the fundamentals of plant cells, structure and functions - CO2 To know the importance of chloroplast and mitochondria & its function - CO3 To learn the nitrogen fixation mechanism and significance of viral vectors - **CO4** To gain the knowledge about the plant tissue culture and transgenic plants - **CO5** To develop the rapeutic products using plants | | | | | | M | APPIN | IG OF | COs W | /ITH P | Os AND | PSOs | | | | | |-----|-----|-----|-----|-----|------|-------|-------|--------|--------|--------|------|------|------|---------|------| | COs | | | | | PROG | RAM C | OUTCC |)MES (| (POs) | | | | | GRAM SF | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 1 | 2 | 2 | 2 | 3 | 2 | 2 | 1 | - | - | - | 1 | 2 | 2 | 2 | | CO2 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 2 | 1 | - | - | 1 | 2 | 2 | 3 | | CO3 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | - | - | - | 1 | 3 | 2 | 2 | | CO4 | 2 | 2 | 3 | 3 | 3 | 2 | 3 | 2 | 2 | - | 2 | - | 3 | 3 | 3 | | CO5 | 2 | 2 | 3 | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 2 | 2 | 3 | 3 | 3 | BT1018 #### **METABOLIC ENGINEERING** L T P C 3 0 0 3 #### **OBJECTIVES:** - To provide a quantitative basis, based on thermodynamics, enzyme kinetics, for the understanding of metabolic networks in single cells and at the organ level. - To enable the students to use organisms to produce valuable substances on an industrial scale in cost effective manner. # UNIT I: INTRODUCTION TO EXAMPLES OF PATHWAY MANIPULATION - 9 QUALITATIVE TREATMENT Enhancement of Product Yield and Productivity, Extension of substrate Range, Extension of Product spectrum and Novel products, Improvement of Cellular properties, Xenobiotic degradation. # UNIT II: MATERIAL BALANCES AND DATA CONSISTENCY
Comprehensive models of cellular reactions; stoichiometry of cellular reactions, reaction rates, dynamic mass balances, yield coefficients and linear rate equations, analysis of over determined systems- identification of gross measurement errors. Introduction to MATLAB® #### UNIT III: METABOLIC FLUX ANALYSIS Theory, overdetermined systems, underdetermined systems- linear programming, sensitivity analysis, methods for the experimental determination of metabolic fluxes by isotope labeling, applications of metabolic flux analysis UNIT IV: METABOLIC CONTROL ANALYSIS 9 CO3 9 9 Fundamentals of Metabolic Control Analysis, control coefficients and the summation theorems, Determination of flux control coefficients, MCA of linear pathways, branched pathways, theory of large deviations CO4 #### UNIT V: ANALYSIS OF METABOLIC NETWORKS 9 Control of flux distribution at a single branch point, Grouping of reactions, case studies, extension of control analysis to intermetabolite, optimization of flux amplifications, consistency tests and experimental validation. CO5 **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. Gregory N. Stephanopoulos ,Aristos A. Aristidou, Jens Nielsen, Metabolic Engineering: Principles and Methodologies ,Academic Press 1998. - 2. Sang Yup Lee E. Terry Papoutsakis Marcel Dekker, Metabolic Engineering.inc 1998 - 3. Nielsen J and Villadsen J. (1994) Bioreaction Engineering Principles. New york: Plenum Press #### **REFERENCES:** - 1. Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists by Eberhard O. Voit Cambridge University Press 2000 - 2. Applications of Plant Metabolic Engineering. R. Verpoorte, A. W. Alfermann and T. S. Johnson (eds). Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. 2007. - 3. Systems Modeling in Cellular Biology: From Concepts to Nuts and Bolts Edited by ZoltanSzallasi, JorgStelling and VipulPeriwal MIT Press Cambridge 2006 ## **COURSE OUTCOMES** Upon completion of the course, - CO1 Students would have gained knowledge on regulation, manipulation and synthesis of metabolic pathways - CO2 Students would have acquired knowledge on data consistency and how to solve material balances - CO3 Students would have developed knowledge about analysis and methods for the metabolic flux - **CO4** After completing this course, students get familiar with the application of metabolic flux analysis. - **CO5** Students would have learnt to analyse and optimise metabolic flux networks. | | | | | | M | APPIN | G OF (| COs W | ITH PC | Os AND | PSOs | | | | | |-----|-----|---|---|---|------|-------|--------|-------|--------|--------|------|---|---|-----------------|-------------------| | COs | | | | | PROG | RAM | OUTCO | MES (| POs) | | | | | GRAM S
COMES | PECIFIC
(PSOs) | | | PO1 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 | | | | | | | | | | | | PSO3 | | | CO1 | 1 | 1 | - | - | 2 | 2 | - | - | - | - | - | - | 2 | 2 | 1 | | CO2 | 1 | 2 | 1 | - | - | 1 | 1 | - | 1 | - | - | - | 2 | 2 | 1 | | СОЗ | 2 | 1 | - | - | 2 | 2 | - | - | - | - | - | - | 2 | 2 | 1 | | CO4 | 2 | 1 | - | - | 2 | 2 | | | - | - | - | - | 2 | 2 | 1 | | CO5 | 2 | 1 | - | - | 2 | 2 | | | - | - | - | - | 2 | - | 1 | BT1019 GENETICS L T P C 3 0 0 3 #### **OBJECTIVES:** - To give an understanding on the fundamentals of conventional genetics and its relevance in disease and therapy - To describe various genetic laws, learn the chromosome structure function and understand methodologies for cytogenetic applications #### UNIT I: BACTERIAL GENETICS Transformation, Transduction, Conjugation – mapping, fine structure mapping in merozygotesplasmids and episomes # UNIT II: CLASSICAL GENETICS 9 Mendel's principles and experiments, segregation, multiple alleles – Independent Assortments, Genotypic interactions, epistasis and Sex chromosomes, Sex determination, Dosage compensation, sex linkage and pedigree analysis CO2 #### UNIT III: APPLIED GENETICS 9 Chromosome organization, structure and variation in prokaryotes and eukaryotes, Giant chromosomes – polytene and lampbrush, deletion, inversion, translocation, duplication. variation in chromosomal numbers – aneuploidy, euploidy, polyploidy, Ames test, karyotyping, Linkage, Crossing over – cytological basis of crossing over, chromosome mapping – two and three factor cross – interference, somatic cell hybridization CO3 #### UNIT IV: POPULATION GENETICS 9 Hardy-Weinberg equilibrium, Extensions of Hardy- Weinberg equilibrium, non random mating, population analysis, Models for population genetics. Mutation and Migration size, Genetic variation and Sociobiology CO4 ## UNIT V: GENETIC DISEASES 9 Inborn errors of metabolism, Sickle cell, hemochromatosis, cystic fibrosis, hypogonadotropichypogonadism, Gaucher's disease, achondroplasia, phenylketonuria, Huntington's Disease, Cystic fibrosis, hemoglobinopathies, Age-related macular degeneration, Obesity, Type 2 diabetes, Psychiatric disease, including missing heritability, autism CO5 **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. Tamarin, R.H., "Principles of Genetics", Tata McGraw Hill, New Delhi, 2002 - 2. De Robertis, E. D. P. and De Robertis, E. M. F., "Cell and Molecular Biology", 8th Edition, Lippincott Williams & Wilkins, New York, USA, 2001. #### **REFERENCES:** - 1. Gardner, E.J, Simmons, M.J, and Snustad, D.P., "Principles of Genetics",8th Edition, JohnWiley& Sons, Singapore, 2003. - 2. Strickberger, M.W., "Genetics", 3rd Edition, Prentice Hall of India, New Delhi, 2008. - 3. Klug, W.S. and Cummings, M.R., "Concepts of Genetics", Pearson Education, New Delhi 2003. ## **COURSE OUTCOMES** - CO1 Gain knowledge about basic techniques involved in Gene transfer methods - CO2 Gain depth knowledge about principles involved in Classical genetics - CO3 Understand about the methods involved in mapping and hybridisation - **CO4** Familiar with population genetics and genetic variations - **CO5** Have awareness about genetically transferred diseases and its analysis | | | | | | M | IAPPIN | IG OF | COs V | VITH P | Os AND |) PSOs | | | | | |-----|-----|-----|-----|-----|------|--------|-------|--------|--------|--------|--------|------|------|--------|------| | COs | | | | | PROG | RAM C | OUTCO |)MES (| (POs) | | | | | GRAM S | | | | P01 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 1 | | 2 | | 3 | | 1 | 1 | | - | - | - | 2 | 2 | 1 | | CO2 | 3 | 2 | 2 | 1 | - | - | 1 | - | 1 | - | - | - | 3 | 2 | 1 | | СОЗ | 2 | 2 | 1 | 1 | 3 | - | 1 | 1 | 1 | - | - | - | 2 | 3 | 1 | | CO4 | 1 | - | - | • | - | - | 1 | 1 | - | - | - | 1 | 2 | 2 | 2 | | CO5 | 2 | 2 | 1 | 2 | 3 | - | - | - | - | - | - | - | 3 | 2 | 1 | | BT1020 | CLINICAL TRIALS | L | Т | Ρ | С | |--------|-----------------|---|---|---|---| | | | 3 | 0 | 0 | 3 | ## **OBJECTIVES:** - To highlight the epidemiologic methods, study design, protocol preparation - To gain knowledge in the basic bio-statistical techniques involved in clinical research. - To describe the principles involved in ethical, legal and regulatory issues in clinical trials. # UNIT I: ROLE OF CLINICAL TRIALS IN NEW DRUG DEVELOPMENT 9 Drug Discovery, regulatory guidance and governance, pharmaceutical manufacturing, nonclinical research, clinical trials, post-marketing surveillance, ethical conduct during clinical trials. ## UNIT II: FUNDAMENTALS OF TRIAL DESIGN Randomised clinical trials, uncontrolled trials. Protocol development, endpoints, patient selection, source and control of bias, randomization, blinding, sample size and power. # UNIT III: ALTERNATE TRIAL DESIGNS Crossover design, factorial design, equivalence trials, bioequivalence trials, non-inferiority trials, cluster randomized trials, multi-center trials. ## UNIT IV: BASICS OF STATISTICAL ANALYSIS Types of data and normal distribution, significance tests and confidence intervals, comparison of means, comparison of proportions, analysis of survival data, subgroup analysis, regression cod analysis, missing data. ## UNIT V: REPORTING OF TRIALS Overview of reporting, trial profile, presenting baseline data, use of tables, figures, critical appraisal of report, meta-analysis. **TOTAL PERIODS: 45** 9 9 9 CO₅ #### **TEXT BOOKS:** - 1. Fundamentals of Clinical Trials, Lawrence M. Friedman, Springer Science & Business Media, 2010 - 2. Textbook of Clinical Trials, David Machin, Simon Day, Sylvan Green, John Wiley & Sons, 2007 - 3. Clinical Trials: A Practical Approach, Stuart J. Pocock, John Wiley & Sons, 17-Jul-2013 #### **REFERENCES:** - 1. Clinical trials, A practical guide to design, analysis and reporting. Duolao Wang and AmeetBakhai. Remedica. 2006. - 2. Introduction to statistics in pharmaceutical clinical trials. T.A. Durham and J Rick Turner. Pharmaceutical Press. - 3. Clinical Trials: Study Design, Endpoints and Biomarkers, Drug Safety, and FDA and ICH Guidelines, Tom Brody, Academic Press, 2016. #### **COURSE OUTCOMES** - CO1 The student will be able to study the epidemiologic methods, study design, protocol preparation - CO2 To gain knowledge in the basics of fundamentals of trial design - **CO3** The student will be able to explain key concepts in the design of clinical trials. - The student will be able to study designs used, identify key issues in data management for clinical trials. - **CO5** The student will be able to describe the roles of regulatory affairs in clinical trials. | | | | | | M | APPIN | G OF C | Os WI | TH PO | s AND F | PSOs | | | | | |-----|-----|---|---|---|------|-------|--------|-------|-------|---------|------|---|---|---------|------| | COs | | | | | PROG | RAM | OUTCO | MES (| POs) | | | | | GRAM SF | | | | PO1 | | | | | | | | | | | | | | PSO3 | | CO1 | 1 | 2 | 2 | 2 | 2 | - | - | - | • | 1 | - | - | 1 | - | 1 | | CO2 | 1 | 2 | 2 | 1 | 2 | - | - | | 2 | 2 | - | - | 2 | - | 2 | | СОЗ | 1 | 2 | 1 | 1 | 2 | 2 | - | | 2 | 2 | - | - | 2 | - | 2 | |
CO4 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | - | 1 | 1 | 1 | 2 | | CO5 | 2 | 1 | 3 | 2 | 3 | 1 | 1 | 1 | 1 | 3 | - | 1 | 1 | - | 1 | #### PROFESSIONAL ELECTIVE - VI # BT1021 TISSUE ENGINEERING L T P C 3 0 0 3 #### **OBJECTIVES:** To enable the students - To learn the fundamentals of tissue engineering and tissue repairing - To acquire knowledge on clinical applications of tissue engineering - To understand the basic concept behind tissue engineering focusing on the stem cells, biomaterials and its applications #### UNIT I: INTRODUCTION CO1 9 Introduction to tissue engineering: Basic definition; current scope of development; use intherapeutics, cells as therapeutic agents, cell numbers and growth rates, measurement of cellcharacteristics morphology, number viability, motility and functions. Measurement of tissue characteristics, appearance, cellular component, ECM component, mechanical measurements and physical properties. ## UNIT II: TISSUE ARCHITECTURE 9 Tissue types and Tissue components, Tissue repair, Basic events of wound healing, Engineering wound healing and its sequential events. Applications of growth factors: VEGF/angiogenesis, Basic properties, Cell-Matrix& Cell-Cell Interactions, telomeres and Self-renewal, Control of cell migration in tissue engineering. CO₂ #### UNIT III: BIOMATERIALS 9 Biomaterials: Types of biomaterials, biological and synthetic materials, Biopolymers, Properties of biomaterials, Surface, bulk, mechanical and biological properties. Scaffolds & tissue engineering, Applications of biomaterials, Modifications of Biomaterials, Role of Nanotechnology. CO3 # UNIT IV: BASIC BIOLOGY OF STEM CELLS 9 Stem Cells: Introduction, hematopoietic differentiation pathway,Potency and plasticity of stemcells, sources, embryonic stem cells, hematopoietic and mesenchymal stem cells, Stem Cellmarkers, FACS analysis, Differentiation,Stem cell systems- Liver, neuronal stem cells, Types &sources of stem cell with characteristics: embryonic, adult, haematopoetic, fetal, cord blood,placenta, bone marrow, primordial germ cells, cancer stem cells induced pleuripotent stem cells. **CO4** ## UNIT V: CLINICAL APPLICATIONS 9 Stem cell therapy, Molecular therapy, In vitro organogenesis, Neurodegenrative diseases, spinalcord injury, heart disease, diabetes, burns and skin ulcers, muscular dystrophy,orthopedicapplications, Stem cells and Gene therapy. Physiological models, tissue engineeredtherapies, product characterization, components, safety, efficacy. Preservation – freezing anddrying. Patent protection and regulation of tissue-engineered products, ethical issues. CO₅ ## **TOTAL PERIODS: 45** ## **TEXT BOOKS:** - 1.Bernhard O.Palsson, SangeetaN.Bhatia, "Tissue Engineering" Pearson Publishers 2009. - 2. Meyer, U.; Meyer, Th.; Handschel, J.; Wiesmann, H.P. .Fundamentals of Tissue Engineering and Regenerative Medicine.2009. #### **REFERENCES:** - 1. Bernard N. Kennedy (editor). Stem cell transplantation, tissue engineering, and cancer applications, Nova Science Publishers, 2008.109 - 2. Raphael Gorodetsky, Richard Schäfer.. Stem cell-based tissue repair. RSC Publishing, 2011. - 3. R. Lanza, I. Weissman, J. Thomson, and R. Pedersen, Handbook of Stem Cells, Two-Volume, Volume 1- - 2: Volume 1-Embryonic Stem Cells; Volume 2-Adult & Fetal Stem Cells, Academic Press, 2004. - 4. R. Lanza, J. Gearhart et al (Eds), Essential of Stem Cell Biology, Elsevier Academicpress, 2006. - 5. J. J. Mao, G. Vunjak-Novakovic et al (Eds), Translational Approaches In TissueEngineering &Regenrative Medicine" Artech House, INC Publications, 2008. - 6. Naggy N. Habib, M.Y. Levicar, , L. G. Jiao, and N. Fisk, Stem Cell Repair and Regeneration, volume-2, Imperial College Press, 2007. #### **COURSE OUTCOMES** Upon completion of the course, the students will be able to - CO1 Understand the components of the tissue architecture and fundamental properties of cells and tissues - **CO2** Gain depth knowledge in wound healing and growth factors - **CO3** Be Aware about the properties and broad applications of biomaterials - CO4 Opportunity to get familiarized with the stem cell characteristics and their relevance in medicine - CO5 Overall exposure to the role of tissue engineering and stem cell therapy in Organogenesis | | | | | | N | IAPPII | NG OF | COs V | VITH P | Os AND | PSOs | | | | | |-----|--|---|---|---|------|--------|-------|-------|--------|--------|------|------|------|--------|------| | COs | | | | | PROG | RAM | OUTCO | MES (| (POs) | | | | | GRAM S | | | | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO | | | | | | | | | | | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 2 | 1 | 1 | 2 | - | - | - | - | - | - | - | - | 3 | 2 | 1 | | CO2 | 2 | 2 | 1 | 1 | 2 | - | - | - | - | - | - | - | 3 | 2 | 2 | | СОЗ | 2 | 2 | 2 | 2 | - | 1 | - | 2 | - | - | - | - | 3 | 3 | 2 | | CO4 | 2 | 2 | 2 | 2 | 3 | 1 | 2 | 3 | 1 | - | 1 | 1 | 3 | 2 | 3 | | CO5 | 2 | 2 | 2 | 2 | 3 | 1 | 2 | 3 | ı | ı | 1 | 2 | 3 | 2 | 3 | BT1022 #### **BIOSAFETY AND HAZARD MANAGEMENT** L T P C 3 0 0 3 ## **OBJECTIVES:** - To introduce awareness on the importance of plant safety and risk analysis - Students learn about implementation of safety procedures, risk analysis and assessment, hazard identification | UNIT I: | INTRODUCTION | 9 | |------------------|---|-----| | • | industries; Safety Programmes – components and realization; Potential perating conditions, toxic chemicals; safe handling | CO1 | | UNIT II: | QUALITY CHECKS | 9 | | • | safety procedures – periodic inspection and replacement; Accidents – evention; promotion of industrial safety | CO2 | | UNIT III: | RISK ANALYSIS | 9 | | ISO 14000, EMS m | semergency planning-on site & off site emergency planning, risk management odels case studies. Quantitative risk assessment – rapid and comprehensive due to Radiation, explosion due to over pressure, jet fire-fire ball. | CO3 | | UNIT IV: | SAFETY AUDITS | 9 | | | n safety audits, checklist, what if analysis, vulnerability models event tree nalysis, Hazan past accident analysis Fixborough-Mexico-Madras-s. | CO4 | | UNIT V: | HAZARDOUS OPERATIONS | 9 | | | | | #### **TEXT BOOKS:** 1. Fawatt, H.H. and Wood, W.S., "Safety and Accident Prevention in Chemical Operation", Wiley Interscience, 1965. CO₅ **TOTAL PERIODS: 45** 2. Marcel, V.C., Major Chemical Hazard- Ellis Harwood Ltd., Chi Chester, UK, 1987. Hazop-quide words, parameters, derivation-causes-consequences-recommendation-coarse Hazop study-case studies-pumping system-reactor-mass transfer system. - 3. Skeleton, B., Process Safety Analysis: An introduction, Institution of chemical Engineers, U.K., 1997. - 4. Hyatt, N., Guidelines for process hazards analysis, hazards identification & risk analysis, Dyadem Press, 2004. #### **REFERENCES:** - 1. Handley, W., "Industrial Safety Hand Book ", 2nd Edn., McGraw-Hill Book Company,1969. - 2. Heinrich, H.W. Dan Peterson, P.E. and Rood, N., "Industrial Accident Prevention", McGraw-Hill Book Co., 1980. - 3. Chemical Process Safety: Fundamentals with Applications, Daniel A. Crowl, J.F. Louvar, Prentice Hall, NJ, 1990. - 4. Taylor, J.R., Risk analysis for process plant, pipelines and transport, Chapman and Hall, London, 1994. #### **COURSE OUTCOMES** - **CO1** To understand the need for safety programmes and potential hazards in industries. - **CO2** To know and implement the safety procedures and quality checks in industries. - **CO3** To perform risk assessment and emergency planning in industries. - **CO4** To carry out safety audit- Hazid and event /fault tree analysis. - **CO5** To perform Hazop Hazan and identify the consequences. | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|-----|----------------------------------|-----|-----|-----|-----|------|------|------|------|------|------| | COs | | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | - | - | - | • | 1 | 1 | 1 | 2 | 2 | 1 | 1 | - | - | 1 | | CO2 | - | - | 1 | - | • | 1 | 1 | 1 | 2 | 2 | 1 | 2 | - | - | 1 | | СОЗ | - | - | 1 | - | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | - | - | 1 | | CO4 | - | - | - | - | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | - | 1 | 1 | | CO5 | - | - | - | - | - | 1 | 1 | 2 | 2 | 2 | 1 | 1 | - | - | 1 | BT1023 #### STEM CELL TECHNOLOGY C #### **OBJECTIVES:** The course objectives are imparting the basic knowledge of students about stem cell, culturing and its clinical applications. #### UNIT I: STEM CELLS AND TYPES 9 Stem cells: Definition, Classification, Sources and Properties -Types of stem cells: methods of isolation, study of stem cells and their viability IPSCs, embryonic stem cells, cancer stem cells. -Preservations of Stem cell. Embryonic stem cell: Isolation, Culturing, Differentiation, Properties – Adult stem cell: Isolation, Culturing, Differentiation, Trans-differentiation, Plasticity, and Properties CO1 #### UNIT II: STEM CELLS IN PLANTS AND ANIMALS 9 Stem cell and founder zones in plants –particulary their roots – stem cells of shoot meristems of higher plants. Skeletal muscle stem cell - Mammary stem cells - intestinal stem cells -CO₂ keratinocyte stem cells of cornea – skin and hair follicles –tumour stem cells. #### **UNIT III:** STEM CELLS DIFFERENTIATION 9 Factors influencing proliferation, physical, chemical and molecular methods for differentiation of stem cells - hormonal role in differentiation. CO₃ #### **UNIT IV: REGENERATION AND EXPERIMENTAL METHODS** 9 Germ cells, hematopoietic organs, and kidney, cord blood transplantation, donor selection, HLA matching, patient selection, peripheral blood and bone marrow transplantation, - Stem cell
Techniques: fluorescence activated cell sorting (FACS), time lapse video, green fluorescent protein tagging **CO4** #### UNIT V: **APPLICATION AND ETHICAL ISSUES** 9 Stem cell Therapy for neurodegenerative diseases, spinal cord injury, heart disease, diabetes, burns, skin ulcers, muscular dystrophy and orthopaedic applications. Stem cell policy and ethics, stem cell research: Hype, hope and controversy. CO₅ **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. Stem cells by C.S Potten., Elsevier, 2006. - 2. Essentials of Stem Cell Biology by Robert Lanza., fourth edition. Elsevier 2014. #### **REFERENCES:** - 1. Stem cell biology and Gene Therapy by Peter Quesenberry., First Edition, Wiley-Liss, 1998. - 2. Embryonic Stem cells Protocols by KursadTurksen., Second Edition Humana Press, 2002. - 3. Stem Cells: From Bench to Bedside by AriffBongso, EngHinLee., World Scientific Publishing Company, 2005. - 4. Stem cells in clinic and Research by Ali Gholamrezanezhad., Intech, 2013 ## **COURSE OUTCOMES** Upon completion of the course, the students will be able to - CO1 Understand the cell sources and basic properties involved stem cells isolation and development - **CO2** Understand the role and applications of stem cells plants and animals - CO3 Understand the fundamental properties of stem cells differentiation - **CO4** Gain knowledge about the current techniques used in characterization of stem cells - **CO5** Gain knowledge about the applications of stems cells and moral ethics involved in implementation of the technology | | MAPPING OF COs WITH POS AND PSOS | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|----------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | COs | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 2 | 1 | 1 | 2 | 2 | - | - | - | - | - | - | - | 3 | 2 | 1 | | CO2 | 3 | 2 | 1 | 3 | 2 | 1 | 1 | 2 | 1 | - | - | 3 | 3 | 2 | 2 | | CO3 | 2 | 1 | 1 | 2 | 2 | 1 | - | - | 1 | - | - | - | 2 | 2 | 1 | | CO4 | 2 | 1 | 1 | - | 3 | - | 2 | 3 | - | - | - | - | 2 | 2 | 2 | | CO5 | 2 | 1 | 1 | 1 | 3 | 1 | 2 | 3 | 1 | - | - | 3 | 2 | 2 | 3 | #### BT1024 #### **IMMUNOTECHNOLOGY** L T P C 3 0 0 3 #### **OBJECTIVES:** The students who would have learnt the science of immunology will now be able to apply the science for the development of relevant immunotechnology. #### UNIT I: INTRODUCTION 9 Cells of the immune system and their development; primary and secondary lymphoid organs; humoral immune response; cell mediated immune responses; complement. CO1 **UNIT II: ANTIBODIES** 10 Monoclonal antibodies and their use in diagnostics; ELISA; Agglutination tests; Antigen detection assay; Plaque Forming Cell Assay. CO₂ **UNIT III: CELLULAR IMMUNOLOGY** 12 PBMC seperation from the blood; identification of lymphocytes based on CD markers; FACS; Lymphoproliferation assay; Mixed lymphocyte reaction; Cr51 release assay; macrophage cultures; cytokine bioassays- IL2, gamma IFN, TNF alpha.; HLA typing. CO₃ **UNIT IV: VACCINE TECHNOLOGY** 6 Basic principles of vaccine development; protein based vaccines; DNA vaccines; Plant based vaccines: recombinant antigens as vaccines: reverse vaccinology CO₄ UNIT V: **DEVELOPMENT OF IMMUNOTHERAPEUTICS** Engineered antibodies; catalytic antibodies; idiotypic antibodies; combinatorial libraries for antibody isolation. CO₅ **TOTAL PERIODS: 45** ## **REFERENCES:** - Roitt, Ivan. Essential Immunology, 9th ed., Blackwell Scientific, 1997 1. - 2. Roitt I., Brostoff J. and Male D. Immunology, 6th ed. Mosby, 2001 - 3. Goldsby, R.A., Kindt, T.J., Osbome, B.A. and Kerby J. Immunology, 5th ed., W.H. Freeman, 2003 - Weir, D.M. and Stewart, J. Immunology, 8th ed., Cheerchill, Linvstone, 1997 4. ## **COURSE OUTCOMES** - Understand fundamental knowledge about the various organs involved in immune response. CO1 immune responses and complement systems. - Developed knowledge about the production and application of producing monoclonal antibodies and CO₂ will have knowledge in various immunological techniques. - Gain knowledge in the separation and identification of lymphocytes and various CD markers. They CO₃ also gain knowledge in cytokine assay. - CO₄ Gain the knowledge about the basic principles and application of various vaccine development - Acquire knowledge on development aspects in engineering antibodies and gain knowledge in CO₅ combinatorial libraries for antibody isolation. | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|----------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | COs | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 1 | 2 | - | - | - | - | - | - | - | - | - | - | 2 | 1 | - | | CO2 | - | | 2 | 2 | 2 | 1 | | | | | - | - | 1 | 1 | 2 | | СОЗ | - | | 3 | 3 | 2 | 1 | | | | - | - | - | 2 | 2 | 2 | | CO4 | - | 1 | 2 | 2 | 2 | 1 | - | - | - | - | - | 1 | 2 | 2 | 2 | | CO5 | 1 | 2 | 2 | 2 | 2 | 2 | - | - | - | - | - | - | 2 | 2 | 2 | # **OPEN ELECTIVE - I** | OCE101 | AIR POLLUTION AND CONTROL | L
3 | T
0 | P
0 | C
3 | | | | | | | |--|--|--------|---------|--------|--------|--|--|--|--|--|--| | · | knowledge on the principle and design of control of Indoor/ particulate/
and its emerging trends. | | | | 3 | | | | | | | | UNIT I: | AIR QULALITY MONITORING | | | | 9 | | | | | | | | and classification of animals, property, | position of Atmosphere – Definition, Scope and Scales of Air Pollution of air pollutants and their effect on human health, vegetation, aesthetic value and visibility- Ambient Air Quality and Emission statlate and Gaseous Pollutants. | | | (| CO1 | | | | | | | | UNIT II: | EFFECT OF ATMOSPHERIC DISPERSION | | | | | | | | | | | | | logy on Air Pollution - Fundamentals, Atmospheric stability, Inversion, plume patterns- Atmospheric Diffusion Theories – Dispersion models, | | | (| CO2 | | | | | | | | UNIT III: | PARTICULATE CONTAMINANTS | | | | 9 | | | | | | | | filters, Particulate | action – Working principle, Gravity Separators, Centrifugal separate Scrubbers, Electrostatic Precipitators – Operational Considerations of Control Equipment. | | | | CO3 | | | | | | | | UNIT IV: | GASEOUS CONTAMINANTS | | | | 9 | | | | | | | | | Adsorption, condensation, Incineration, Bio scrubbers, Bio filters – Propring – Operational Considerations- Factors affecting Selection of Contrapturing. | | S | (| CO4 | | | | | | | | UNIT V: | INDOOR AIR QUALITY MONITORING | | | | 9 | | | | | | | | , | I control of indoor air pollutants, sick building syndrome types –Source bllution– Standards–Control and Preventive measures. | es an | d | (| CO5 | | | | | | | | TEVT BOOKS | т | ТОТА | 'L PEI | RIOI | DS: 45 | | | | | | | | TEXT BOOKS: 1. Lawrence I 2004. | K. Wang, Norman C. Pareira, Yung Tse Hung, Air Pollution Control | Eng | ineerii | ng, - | Tokyo, | | | | | | | | 2. Noel de Ne | evers, Air Pollution Control Engineering, Mc Graw Hill, New York, 1995
L. Y, "Air Pollution and Control Technologies" , Allied Publishers (P) Ltd | | dia 20 | 02 | | | | | | | | | REFERENCES: | | | | | | | | | | | | David H.F. Liu, Bela G. Liptak "Air Pollution", Lweis Publishers, 2000. Arthur C.Stern, "Air Pollution (Vol.I – Vol.VIII)", Academic Press, 2006. Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc.,2000 1. 2. 3. #### **COURSE OUTCOMES** Upon completion of the course, the students will be able to - CO1 Understand the chemistry of atmosphere, characterize the air pollutants , know the effects of air pollution, identify the criteria air pollutants and know about NAAQS - Apply the knowledge of mathematics and science fundamentals to understand the concept of meteorology, air pollution dispersion and Gaussian plume dispersion model - CO3 Select suitable method and design the particulate pollutant control equipment - CO4 Select appropriate method for control of gaseous pollutant by due consideration of sources of emission - CO5 Understand the source of indoor air pollution, effects and control methods as well as to identify the source of noise, and select suitable method for control of noise pollution | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|-----|----------------------------------|-----|-----|-----|-----|------|------|------|------|------|------| | COs | | | | | PROGRAM SPECIFIC OUTCOMES (PSOs) | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 2 | 1 | | | - | | | - | - | - | - | - | 1 | - | 3 | | CO2 | 2 | 1 | 1 | | 1 | | | - | - | - | - | - | 1 | - | 3 | | CO3 | 3 | 2 | - | - | - | 1 | - | - | - | - | - | - | 1 | - | 3 | | CO4 | 3 | 2 | - | - | - | 1 | - | - | - | - | - | - | 1 | - | 3 | | CO5 | 3 | 2 | - | - | - | 1 | - | - | - | - | - | - | 1 | - | 3 | **OME101** # **AUTOMOTIVE SYSTEMS** L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the construction and working principle of various parts of an automobile. - To have the practice for assembling and dismantling of engine parts and transmission system #### UNIT I: AUTOMOTIVE ENGINE AUXILIARY SYSTEMS CO1 Automotive engines- External combustion engines –Internal combustion engines -classification of engines- SI Engines- CI Engines- two stroke engines -four stroke engines- construction and working principles - IC engine components- functions and materials
-valve timing –port timing diagram-Injection system -Unit injector system- Rotary distributor type - Electronically controlled injection system for SI engines-CI engines-Ignition system - Electronic ignition system -Transistorized ignition system, capacitive discharge ignition system. 143 # UNIT II: VEHICLE FRAMES AND STEERING SYSTEM CO2 Vehicle construction and different Chassis layouts –classifications of chassis- types of frames-frameless chassis construction –articulated vehicles- vehicle body - Vehicle aerodynamics-various resistances and its effects - steering system –conventional – sophisticated vehicle- and types of steering gear box-Power Steering- Steering geometry-condition for true rolling motion-Ackermann's-Devi's steering system - types of stub axle – Types of rear axles. #### UNIT III: TRANSMISSION SYSTEMS 9 Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints — CO3 Hotchkiss Drive and Torque Tube Drive- rear axle- Differential-wheels and tyres. ## UNIT IV: SUSPENSION AND BRAKES SYSTEMS 9 Suspension Systems - conventional Suspension Systems - independent Suspension Systems - leaf spring - coil spring - taper-lite - eligo,s spring Types of brakes - Pneumatic and Hydraulic Braking Systems, Antilock Braking System (ABS), electronic brake force distribution (EBD) and Traction Control. Derive the equation of Forces acting while applying a brakes on plain surface - inclined road-gradient. #### UNIT V: ALTERNATIVE ENERGY SOURCES 9 Use of Natural Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol and Hydrogen in Automobiles- Engine modifications required —Performance, Combustion and Emission Characteristics of SI and CI engines with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell. Turbo chargers -Engine emission control by three way catalytic converter system. Note: Practical Training in dismantling and assembling of Engine parts and Transmission Systems should be given to the students. **TOTAL PERIODS: 45** #### **TEXT BOOKS:** - 1. Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2012. - 2. Jain K.K. and Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, New Delhi, 2002. - 3. Kirpal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, New Delhi, 2020 ## **REFERENCES:** - 1. Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998. - 2. Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, 2004. - 3. Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Good heart Will Cox Company Inc, USA, 2007. - 4. Newton, Steeds and Garrett, "Motor Vehicles", Butterworth Publishers, 2001. ## **COURSE OUTCOMES** - **CO1** To identify the different components in automobile Engineering. - **CO2** To understand the different types of vehicle frames and steering mechanism. - **CO3** To have clear understanding on different auxiliary and transmission systems usual. - **CO4** To understand the vehicle suspension and different types of brakes systems. - **CO5** To understand the alternative energy used for vehicle. | | | | | | MA | PPING | OF C | Os WIT | TH POs | AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|-------|------|--------|--------|-------|------|------|------|------|-------------------| | COs | | | | | PROG | RAM C | UTCO | MES (I | POs) | | | | | | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 3 | 2 | 1 | | | | | | | CO2 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 3 | 2 | 1 | | | | | | | СОЗ | 3 | 2 | 3 | 2 | 2 | 1 | - | - | - | - | 1 | 1 | 3 | 2 | 1 | | CO4 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 3 | 2 | 1 | | | | | | | CO5 | 1 | 3 | - | - | 1 | 3 | 3 | 1 | - | - | - | 1 | 3 | 2 | 1 | # **OEI103** # BASICS OF BIOMEDICAL INSTRUMENTATION L T P C 3 0 0 3 # **OBJECTIVES:** - To Introduce Fundamentals of Biomedical Engineering - To study the communication mechanics in a biomedical system with few examples - To study measurement of certain important electrical and non-electrical parameters - To understand the basic principles in imaging techniques - To have a basic knowledge in life assisting and therapeutic devices # UNIT I: HUMAN BODY SUBSYSTEM AND TRANSDUCERS 9 Brief description of muscular, cardiovascular and respiratory systems; their electrical, mechanical and chemical activities. Principles and classification of transducers for Bio-medical applications. Electrode theory, different types of electrodes; Selection criteria for transducers and electrodes CO₁ # UNIT II: NON ELECTRICAL PARAMETERS MEASUREMENT 9 Measurement of blood pressure - Cardiac output - Heart rate - Heart sound - Pulmonary function measurements - spirometer - Blood Gas analysers, pH of blood - Measurement of blood pCO2, pO2. CO2 # UNIT III: ELECTRICAL PARAMETERS MEASUREMENT AND ELECTRICAL SAFETY 9 ECG – EEG – EMG – ERG – Lead systems and recording methods – Typical waveforms - Electrical safety in medical environment, shock hazards – leakage current - Instruments for checking safety parameters of biomedical equipments. CO3 # UNIT IV: IMAGING MODALITIES AND BIO-TELEMETRY q Diagnostic X-rays - Computer tomography – MRI – Ultrasonography – Endoscopy – Thermography – Different types of biotelemetry systems. **CO4** # UNIT V: LIFE ASSISTING AND THERAPEUTIC DEVICES 9 Pacemakers – Defibrillators – Ventilators – Nerve and muscle stimulators - Heart Lung machine – Dialysers - Diathermy – Lithotripsy. **CO5** **TOTAL PERIODS:45** # **TEXT BOOKS:** - 1. Leslie Cromwell, Biomedical Instrumentation and Measurement, Prentice hall of India, New Delhi, 2007. - 2. Joseph J.carr and John M. Brown, Introduction to Biomedical Equipment Technology, John Wiley and sons, New York, 4th Edition, 2012. - 3. Khandpur R.S, Handbook of Biomedical Instrumentation, , Tata McGraw-Hill, New Delhi, 2nd Edition, 2003. # **REFERENCES:** - 1. John G. Webster, Medical Instrumentation Application and Design, John Wiley and sons, New York, 1998. - 2. Duane Knudson, Fundamentals of Biomechanics, Springer, 2nd Edition, 2007. - 3.Suh, Sang, Gurupur, Varadraj P., Tanik, Murat M., Health Care Systems, Technology and Techniques, Springer, 1st Edition, 2011. - 4.Ed. Joseph D. Bronzino, The Biomedical Engineering Hand Book, Third Edition, Boca Raton, CRC Press LLC, 2006. - 5.M.Arumugam, 'Bio-Medical Instrumentation', Anuradha Agencies, 2003 # **COURSE OUTCOMES** Upon completion of the course, the students will gain knowledge on - **CO1** Understand the physiological systems and the various components of a biomedical system. - CO2 Understand the techniques and instruments used to measure blood pressure, cardiac output, blood pH and various pulmonary function measurements. - CO3 Understand the working of different electrodes used to sense bio signals; know about the electrical safety in biomedical measurement, and about electrical parameter acquisition. - CO4 Understand the techniques for imaging such as CT scan, MRI, Ultrasonography, fluoroscopic, and radiographic techniques. - **CO5** Understand the working of various life assisting, therapeutic and robotic devices. | | | | | | MAF | PPING | OF CO | s WITH | l POs A | AND PS | Os | | | | | |-----|-----|-----|-----|-----|-------|-------|-------|--------|---------|--------|----|---|---|--------|-------------------| | COs | | | | | PROGI | RAM O | UTCO | MES (P | Os) | | | | | RAM SF | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | | CO1 | 1 | - | 2 | 2 | 2 | 3 | 2 | 2 | 2 | | | | | | | | CO2 | 2 | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | | CO3 | 2 | - | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | | CO4 | 2 | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | | CO5 | 1 | - | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | # OCS103 # INTRODUCTION TO CLOUD COMPUTING L T P C 3 0 0 3 # **OBJECTIVES** - ❖ To have the fundamental ideas behind Cloud Computing, the evolution of the paradigm, its applicability, benefits, as well as current and future challenges - ❖ To have knowledge on the various virtualization techniques that serve in computation and storage services on the cloud - ❖ To understand the technologies, architecture and applications of cloud computing - To understand the key security and compliance challenges of cloud computing # UNIT I INTRODUCTION 9 Introduction to Cloud Computing – Roots of Cloud Computing- Parallel and Distributed Computing, Mainframe and Grid Computing, Desired Features and benefits of Cloud Computing – Challenges and Risks of Cloud Computing CO1 # UNIT II VIRTUALIZATION 9 Introduction to Virtualization Technology – Load Balancing and Virtualization – Understanding Hypervisor and its types, Types of Virtualizations – Hardware, OS, Memory, Application CO2 Virtualization, Levels of Virtualization # UNIT III CLOUD ARCHITECTURE, SERVICES AND STORAGE 9 NIST Cloud Computing Reference Architecture, Layered Cloud Architecture, Architectural Design Challenges – Deployment models of cloud, Services of cloud – Cloud Storage. CO₃ # UNIT IV RESOURCE MANAGEMENT AND SECURITY IN CLOUD 9 Inter Cloud Resource Management – Resource Provisioning Methods – Security Overview – Cloud Security Architecture-Cloud Security Challenges – Data Security –Application Security – Virtual Machine Security. CO4 # UNIT V CASE STUDIES 9 CO5 Google App Engine (GAE) – GAE Architecture – Functional Modules of GAE – Amazon Web Services (AWS) – GAE Applications – Cloud Software Environments – Bio-data Platform & Bio Cloud **TOTAL: 45 PERIODS** # **TEXT BOOKS** - 1. Buyya R., Broberg J., Goscinski A., "Cloud Computing: Principles and Paradigm", First Edition, John Wiley & Sons, 2011. - 2. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing,
From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012. - 3. Rittinghouse, John W., and James F. Ransome, "Cloud Computing: Implementation, Management, And Security", CRC Press, 2017. # REFERENCE BOOKS - 1. Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, "Mastering Cloud Computing", Tata Mcgraw Hill, 2013. - 2. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing A Practical Approach", Tata Mcgraw Hill, 2009. - 3. George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud: Transactional Systems for EC2 and Beyond (Theory in Practice)", O'Reilly, 2009. # **COURSE OUTCOMES** Upon completion of the course, the students will - Articulate the main concepts, key technologies, strengths, and limitations of cloud computing and the possible applications for state-of-the-art cloud computing - CO2 Understanding of fundamentals and technological aspects of virtualization along with various terminologies used in Cloud Computing - ldentify the architecture and infrastructure of cloud computing, including SaaS, PaaS, IaaS, public cloud, private cloud, hybrid cloud, etc. - **CO4** Enlighten the core issues of cloud computing such as security, privacy, and interoperability. - CO5 Be familiarization with areas of cloud technologies and working experience in several of them | | | | | | MA | PPING | OF C | Os WI | TH PO | s AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|-------|------|--------|-------|---------|-----|---|---|--------|-------------------| | COs | | | | | PROG | RAM C | UTCO | MES (I | POs) | | | | | RAM SF | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | CO1 | 2 | 1 | - | - | - | - | 2 | 1 | - | | | | | | | | CO2 | 2 | 1 | - | - | - | - | - | - | - | | | | | | | | CO3 | 2 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 1 | | CO4 | 1 | - | - | - | - | - | 2 | - | - | 1 | | | | | | | CO5 | 2 | 1 | 1 | - | 2 | 2 | - | - | 2 | - | - | 3 | 2 | 2 | 2 | **OCH103** # **ENVIRONMENT AND AGRICULTURE** L T P C 3 0 0 3 # **OBJECTIVES:** To emphasize on the importance of environment and agriculture on changing global scenario and the emerging issues connected to it. # UNIT I: ENVIRONMENTAL CONCERNS 8 Environmental basis for agriculture and food – Land use and landscape changes – Water quality issues – Changing social structure and economic focus – Globalization and its impacts – Agro ecosystems. CO1 # UNIT II: ENVIRONMENTAL IMPACTS 9 Irrigation development and watersheds – mechanized agriculture and soil cover impacts – Erosion and problems of deposition in irrigation systems – Agricultural drainage and downstream impacts – Agriculture versus urban impacts. CO₂ # UNIT III: CLIMATE CHANGE Global warming and changing environment – Ecosystem changes – Changing blue-green-grey water cycles – Water scarcity and water shortages – Desertification. CO3 # UNIT IV: ECOLOGICAL DIVERSITY AND AGRICULTURE 10 8 Ecological diversity, wild life and agriculture – GM crops and their impacts on the environment – Insets and agriculture – Pollination crisis – Ecological farming principles – Forest fragmentation and agriculture – Agricultural biotechnology concerns. CO4 # UNIT V: EMERGING ISSUES 10 Global environmental governance – alternate culture systems – Mega farms and vertical farms – Virtual water trade and its impacts on local environment – Agricultural environment policies and its impacts – Sustainable agriculture. CO₅ **TOTAL PERIODS: 45** # **TEXT BOOKS:** 1. M.Lakshmi Narasaiah, Environment and Agriculture, Discovery Pub. House, 2006. 2. Arvind Kumar, Environment and Agriculture, ABH Publications, New Delhi, 2005. # **REFERENCES:** - 1. T.C. Byerly, Environment and Agriculture, United States. Dept. of Agriculture. Economic Research Service, 2006. - 2. Robert D. Havener, Steven A. Breth, Environment and agriculture: rethinking development issues for the 21st century: proceedings of a symposium, Winrock International Institute for Agricultural Development, 1994 - 3. Environment and agriculture: environmental problems affecting agriculture in the Asia and Pacific region; World Food Day Symposium, Bangkok, Thailand. 1989 # **COURSE OUTCOMES** Upon completion of the course, the students will be able to - **CO1** To gain knowledge on the issues of environmental concerns - **CO2** To understand the environmental impacts on agriculture and watershed. - CO3 To gain knowledge on the basic concepts of Climate Change, Water scarcity and water knowledge - **CO4** To understand the ecosystem, ecological diversity - CO5 To understand the global and local emerging issues on agriculture and biotechnology | | | | | | M | APPIN(| G OF C | Os WI | TH PO | s AND F | PSOs | | | | | |-----|-----|-----|-----|-----|------|--------|--------|-------|-------|---------|------|---|---|---|----------------------| | COs | | | | | PROG | RAM | OUTCO | MES (| POs) | | | | | | SPECIFIC
S (PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | CO1 | 3 | 1 | 2 | 1 | - | 1 | 2 | 2 | 2 | 2 | | | | | | | CO2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | | | | | | | CO3 | 3 | 3 | 3 | 1 | - | 3 | 3 | 1 | - | - | 1 | 3 | 3 | 3 | 3 | | CO4 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | | | | | | | | CO5 | 3 | 1 | 2 | 1 | - | 2 | 2 | 1 | - | - | 1 | 2 | 2 | 3 | 3 | # OEI101 # **SENSORS AND TRANSDUCERS** L T P C 3 0 0 3 # **OBJECTIVES:** - To understand the concepts of measurement technology. - To learn the various sensors used to measure various physical parameters. - To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development. # UNIT I: INTRODUCTION 9 Basics of Measurement – Classification of errors – Error analysis – Static and dynamic characteristics of transducers – Performance measures of sensors – Classification of sensors – CO1 Sensor calibration techniques – Sensor Output Signal Types. # UNIT II: MOTION, PROXIMITY AND RANGING SENSORS 9 Motion Sensors – Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro, Accelerometer.,– GPS, Bluetooth, Range Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR). # UNIT III: FORCE, MAGNETIC AND HEADING SENSORS 9 Strain Gage, Load Cell, Magnetic Sensors –types, principle, requirement and advantages: Variable reluctance transducers, Magneto resistive – Hall Effect – Current sensor Heading Sensors – CO3 Compass, Gyroscope, Inclinometers # UNIT IV: OPTICAL, PRESSURE AND TEMPERATURE SENSORS 9 Photo conductive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors - Smart Sensors-Film sensor, MEMS & Nano Sensors, LASER sensors. # UNIT V: SIGNAL CONDITIONING and DAQ SYSTEMS 9 Amplification – Filtering – A/D converter - Sample and Hold circuits – Data Acquisition: Single channel and multi channel data acquisition – Digital recording systems - Data logging - applications - Automobile, Aerospace, Home appliances, Manufacturing, Environmental monitoring. **TOTAL PERIODS: 45** # **TEXT BOOKS:** - Ernest O Doebelin, "Measurement Systems Applications and Design", Tata McGraw-Hill, 2009. - 2. Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumentation and Control", 12th edition, Dhanpat Rai & Co, New Delhi, 2013. # **REFERENCES:** - 1. Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. - 2. John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications, 1999. - 3. Richard Zurawski, "Industrial Communication Technology Handbook" 2nd edition, CRC Press, 2015. - 4. Ian Sinclair, Sensors and Transducers, 3rd Edition, Elsevier, 2012 Upon completion of the course, the students will gain knowledge on **CO1** Understand various calibration techniques, error analysis and signal types for sensors. **CO2** Gain knowledge about motion, proximity and ranging sensors. **CO3** Ability to understand force, magnetic and heading sensors. **CO4** Study the basic principles of optical, pressure and temperature sensors. **CO5** Implement the DAQ systems along with signal conditioning circuits. | | | | | | MA | PPING | OF C | Os WIT | H POs | AND PS | SOs | | | | | |-----|-----|-----|-----|-----|------|-------|-------|--------|-------|--------|-----|---|---|---|-------------------| | COs | | | | | PROG | RAM C | OUTCO | MES (F | POs) | | | | | | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | CO1 | 3 | 3 | 3 | 3 | 1 | 1 | 2 | 3 | 3 | 3 | | | | | | | CO2 | 3 | 3 | 3 | 3 | 1 | 1 | 2 | 3 | 3 | 3 | | | | | | | СОЗ | 3 | 3 | 3 | 3 | 1 | 2 | 2 | 1 | - | 1 | 1 | 2 | 3 | 3 | 3 | | CO4 | 3 | 3 | 3 | 3 | 1 | 1 | 2 | 1 | - | 1 | 1 | 2 | 3 | 3 | 3 | | CO5 | 3 | 3 | 3 | 3 | 1 | 2 | 2 | 1 | - | 1 | 1 | 2 | 3 | 3 | 3 | # **OPEN ELECTIVE - II** # **OME102 DESIGN OF EXPERIMENTS** C **OBJECTIVES:** •To demonstrate knowledge and understanding of Classical Design of Experiments (DOE). •To demonstrate knowledge and understanding of Taguchi's approach. •To develop skills to design and conduct experiments using DOE and Taguchi's approach. •To develop competency for analysing the data to determine the optimal process parameters that optimize the process. UNIT I: **FUNDAMENTALS OF EXPERIMENTAL DESIGNS** 9 Hypothesis testing - single mean, two means, dependant/ correlated samples - confidence intervals, Experimentation - need, Conventional test strategies, Analysis of variance, F-test, terminology, basic principles of design, steps in experimentation – choice of sample size – Normal CO1 and half normal probability plot – simple linear and multiple linear regression, testing using Analysis of variance. **UNIT II:** SINGLE FACTOR
EXPERIMENTS 9 Completely Randomized Design- effect of coding the observations- model adequacy checking estimation of model parameters, residuals analysis- treatment comparison methods- Duncan's CO₂ multiple range test, Newman- Keuel's test, Fisher's LSD test, Tukey's test- testing using contrasts-Randomized Block Design – Latin Square Design- Graeco Latin Square Design – Applications. UNIT III: **FACTORIAL DESIGNS** 9 Main and Interaction effects - Two and three factor full factorial designs- Fixed effects and random effects model - Rule for sum of squares and Expected Mean Squares- 2K Design with two and CO₃ three factors- Yate's Algorithm- fitting regression model- Randomized Block Factorial Design -Practical applications. **UNIT IV:** SPECIAL EXPERIMENTAL DESIGN 9 Blocking and Confounding in 2K Designs- blocking in replicated design- 2K Factorial Design in two blocks- Complete and partial confounding- Confounding 2K Design in four blocks- Two level Fractional Factorial Designs- one-half fraction of 2K Design, design resolution, Construction of one-**CO4** half fraction with highest design resolution, one-quarter fraction of 2K Design- introduction to response surface methods, central composite design. Design of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments-Response Graph Method, ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner/outer OA design- case studies. **TAGUCHI METHODS** UNIT V: **TOTAL PERIODS: 45** 9 # **TEXT BOOKS:** 1. Douglas C. Montgomery, "Design and Analysis of Experiments", John Wiley & sons, 2012. # REFERENCES: - 1. Box, G. E., Hunter, W.G., Hunter, J.S., Hunter, W.G., "Statistics for Experimenters: Design, Innovation, and Discovery", 2nd Edition, Wiley, 2005. - 2. Krishnaiah K, and Shahabudeen P, "Applied Design of Experiments and Taguchi Methods", PHI, India, 2011. - 3. Phillip J. Ross, "Taguchi Techniques for Quality Engineering", Tata McGraw-Hill, India, 2005. # **COURSE OUTCOMES** Upon completion of the course, the students will be able to - **co1** Understand the basic principle of DOEs and ANOVA. - **CO2** Understand the various single factor experiments - **co3** Learn full and fraction factorial experiment design. - **CO4** Design various resolution using 2^k. - **cos** Understand the Taguchi Orthogonal Arrays. | | | | | | MA | APPING | OF C | Os WI | TH PO | s AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|--------|------|-------|-------|---------|-----|---|---|---------|---| | COs | | | | | PROG | RAM C | итсо | MES (| POs) | | | | | GRAM SI | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | CO1 | 3 | 3 | 2 | 3 | 1 | | | - | | | 2 | 2 | 1 | 2 | 1 | | CO2 | 2 | 2 | 2 | 3 | - | - | - | - | - | - | 2 | 2 | 1 | 2 | 1 | | СОЗ | 1 | 1 | 1 | 2 | - | - | - | - | - | - | 2 | 2 | 1 | 2 | 1 | | CO4 | 1 | 1 | 1 | 2 | - | - | - | - | - | - | 2 | 2 | - | 1 | - | | CO5 | 1 | 1 | 1 | 2 | - | - | - | - | - | - | 2 | 2 | - | 1 | - | **OCE104** # **GREEN BUILDING DESIGN** L T P C 3 0 0 3 # **OBJECTIVES** - The course aims to develop skills of the students in the area of Civil Engineering with emphasis in environmental implications of buildings and comforts in building - This will enable the students to perform calculations pertaining to processes and operations. | UNIT I | ENVIRONMENTAL IMPLICATIONS OF BUILDINGS | 9 | |--------------------|--|------| | of production | bon emissions, water use, waste disposal; Building materials: sources, methods and environmental Implications. Embodied Energy in Building Materials: energy for Building Materials; Maintenance Energy for Buildings. | CO1 | | UNIT II | IMPLICATIONS OF BUILDING TECHNOLOGIES EMBODIED ENERGY OF BUILDINGS | 9 | | | uction, Masonry Construction. Resources for Building Materials, Alternative | CO2 | | concepts. Recyc | cling of Industrial and Buildings Wastes. Biomass Resources for buildings. | | | UNIT III | COMFORTS IN BUILDING | 9 | | Thermal Comfor | rt in Buildings- Issues; Heat Transfer Characteristic of Building Materials and | CO3 | | Building Technic | ues. Incidence of Solar Heat on Buildings-Implications of Geographical Locations | COS | | UNIT IV | UTILITY OF SOLAR ENERGY IN BUILDINGS | 9 | | Utility of Solar e | nergy in buildings concepts of Solar Passive Cooling and Heating of Buildings. | CO4 | | Low Energy Cod | oling. Case studies of Solar Passive Cooled and Heated Buildings. | CO4 | | UNIT V | GREEN COMPOSITES FOR BUILDINGS | 9 | | Concepts of Gre | en Composites. Water Utilization in Buildings, Low Energy Approaches to Water | | | Management. M | anagement of Solid Wastes. Management of Sullage Water and Sewage. Urban | CO5 | | • | d Green Buildings. Green Cover and Built Environment. | | | | TOTAL : 45 PER | IODS | Upon completion of the course, the students will be able to - **CO1** Understand core building science fundamentals - **CO2** Perform some building sustainability concepts - CO3 Understand energy efficiency in relation to cost performance, ROI, etc - CO4 Understand and perform some building performance testing and be exposed to different agencies involved in the testing. - **CO5** Understand and perform some weatherization fundamentals. | | | | | | M | APPING | G OF C | Os WI | TH PO | s AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|--------|--------|-------|-------|---------|-----|---|---|------------------|-------------------| | COs | | | | | PROG | RAMC | отсо | MES (| POs) | | | | | GRAM SI
COMES | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | | CO1 | 3 | 3 | - | 3 | 3 | 3 | 3 | - | - | - | 3 | 2 | 1 | - | 3 | | CO2 | 3 | 3 | - | 3 | 3 | 2 | 1 | - | 3 | | | | | | | | CO3 | 3 | 3 | - | 3 | 3 | 3 | 3 | - | - | - | 3 | 2 | 1 | - | 3 | | CO4 | 3 | 3 | - | 3 | 3 | 3 | 3 | - | - | - | 3 | 2 | 1 | - | 3 | | CO5 | 3 | 3 | - | 3 | 3 | 3 | 3 | - | - | - | 3 | 2 | 1 | - | 3 | # OCH101 **HOSPITAL MANAGEMENT** 3 **OBJECTIVES:** • To understand the fundamentals of hospital administration and management. - To know the market related research process - To explore various information management systems and relative supportive services. - To learn the quality and safety aspects in hospital. | UNIT I: | OVERVIEW OF HOSPITAL ADMINISTRATION | 9 | |---|--|-----| | | en Hospital and Industry, Challenges in Hospital Administration – Hospital ent Planning – Functional Planning | CO1 | | UNIT II: | HUMAN RESOURCE MANAGEMENT IN HOSPITAL | 9 | | Principles of HRM – Manpower Planr | – Functions of HRM – Profile of HRD Manager –Human Resource Inventory | CO2 | | UNIT III: | RECRUITMENT AND TRAINING | 9 | | • | ents of Hospital, Recruitment, Selection, Training Guidelines – Methods of ion of Training – Leadership grooming and Training, Promotion – Transfer. | CO3 | | UNIT IV: | SUPPORTIVE SERVICES | 9 | | Medical Records I
Food Services - La | Department – Central Sterilization and Supply Department – Pharmacy – aundry Services | CO4 | | UNIT V: | COMMUNICATION AND SAFETY ASPECTS IN HOSPITAL | 9 | | • • • • • • • • • • • • • • • • • • • | ing of Communication, Modes of Communication – Telephone, ISDN, Public d Music – CCTV.Security – Loss Prevention – Fire Safety – Alarm System – | CO5 | **TOTAL PERIODS: 45** # **TEXT BOOKS:** Safety Rules. - 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI Fourth Edition, 2006. - 2. G.D.Kunders, "Hospitals Facilities Planning and Management TMH, New Delhi Fifth Reprint 2007. # REFERENCES: - 1. Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering, Academic Press, New York, 1977. - 2. Norman Metzger, "Handbook of Health Care Human Resources Management", 2nd edition Aspen Publication Inc. Rockville, Maryland, USA, 1990. - 3. Peter Berman "Health Sector Reform in Developing Countries" Harvard University Press, 1995. - 4. William A. Reinke "Health Planning For Effective Management" Oxford University Press.1988 - 5. Blane, David, Brunner, "Health and SOCIAL Organization: Towards a Health Policy for the 21st Century", Eric Calrendon Press 2002. - 6. Arnold D. Kalcizony & Stephen M. Shortell, "Health Care Management", 6th Edition Cengage Learning, 2011. Upon completion of the course, the students will be able to - **CO1** To explain the principles of hospital administration. - **CO2** To identify the importance of human resource management. - CO3 To list various marketing research techniques. - **CO4** To identify information management systems and its uses. - **CO5** To understand safety procedures followed in hospitals | | | | | | M | APPING | G OF C | Os WI | TH PO | s AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|--------|--------|-------|-------|---------|-----|---|---|------------------|---| | COs | | | | | PROG | RAM C | OUTCO | MES (| POs) | | | | | RAM SP
OMES (| | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | CO1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | - | - | | | | | | | CO2 | 1 | 1 | 1 | - | 1 | 3 | 1 | 1 | - | 1 | | | | | | | CO3 | 1 | 2 | 2 | 1 | 1 | - | 1 | 2 | 3 | 2 | 3 | 1 | 1 | - | - | | CO4 | 1 | 2 | 2 | 1 | 1 | - | 1 | 2 | 3 | 2 | 3 | 1 | 1 | - | - | | CO5 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 3 | 2 | 1 | 1 | 1 | OIE102 ROBOTICS L T P C 3 0 0 3 # **OBJECTIVES:** - To understand the functions of the basic components of a Robot. - To study the use of various types of End of Effectors and Sensors - To impart knowledge in Robot Kinematics and Programming - To learn Robot safety issues and economics. # UNIT I:
FUNDAMENTALS OF ROBOT 6 Robot - Definition - Robot Anatomy - Co ordinate Systems, Work Envelope Types and Classification- Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load-Robot Parts and their Functions-Need for Robots-Different Applications. CO1 # UNIT II: ROBOT DRIVE SYSTEMS AND END EFFECTORS 9 Pneumatic Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison of all these Drives, End Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations. CO₂ # UNIT III: SENSORS AND MACHINE VISION 12 Requirements of a sensor, Principles and Applications of the following types of sensors- Position sensors - Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Position Sensors, Range Sensors Triangulations Principles, Structured, Lighting Approach, Time of Flight, Range Finders, Laser Range Meters, Touch Sensors ,binary Sensors., Analog Sensors, Wrist Sensors, Compliance Sensors, Slip Sensors, Camera, Frame Grabber, Sensing and Digitizing Image Data- Signal Conversion, Image Storage, Lighting Techniques, Image Processing and Analysis-Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms, Applications- Inspection, Identification, Visual Serving and Navigation. CO₃ # UNIT IV: ROBOT KINEMATICS AND ROBOT PROGRAMMING 13 Forward Kinematics, Inverse Kinematics and Difference; Forward Kinematics and Reverse Kinematics of manipulators with Two, Three Degrees of Freedom (in 2 Dimension), Four Degrees of freedom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dynamics, Trajectory Generator, Manipulator Mechanism Design-Derivations and problems. Lead through Programming, Robot programming Languages-VAL Programming-Motion Commands, Sensor Commands, End Effector commands and simple Programs. CO4 # UNIT V: IMPLEMENTATION AND ROBOT ECONOMICS 5 RGV (Rail Guided Vehicle), AGV (Automatic Guided Vehicle); Implementation of Robots in Industries-Various Steps; Safety Considerations for Robot Operations, Hazards of robot, Economic Analysis of Robots- Payback, EUAC, ROI Method. CO₅ **TOTAL PERIODS: 45** # **TEXT BOOKS:** - 1. Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering An Integrated Approach", Prentice Hall, 2003. - 2. Groover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw Hill, 2001. # **REFERENCES:** - 1. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008. - 2. Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 1994. - 3. Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992. - 4. Fu.K.S., Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987. - 5. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995. - 6. Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2008. - 7. Surender Kumar, "Industrial Robots and Computer Integrated Manufacturing", Oxford and IBH Publishing Co. Pvt. Ltd., 1991. Upon completion of the course, the students will gain knowledge on - To learn concepts of Robotic system, its components and instrumentation and control related to robotics. - **CO2** To improve skills on hardware drives and interfacing aspects. - **CO3** To enhance basics of different sensors and machine vision interaction. - **CO4** To develop student's skills in performing kinematics analysis of robot systems. - **CO5** To provide the student with some knowledge and skills associated with robot economics control. | | | | | | MA | APPING | OF C | Os WI | TH PO | s AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|--------|------|-------|-------|---------|-----|---|---|---------|---| | COs | | | | | PROG | RAM | отсо | MES (| POs) | | | | | GRAM SI | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | | | | | | CO1 | 3 | - | 3 | 1 | 2 | - | - | 3 | 2 | 1 | | | | | | | CO2 | 2 | 3 | 2 | 2 | 2 | , | , | , | - | - | - | - | 3 | 2 | 1 | | СОЗ | 2 | 2 | 3 | 2 | 3 | 2 | - | - | - | - | - | - | 3 | 2 | 1 | | CO4 | 2 | 2 | 2 | 3 | 3 | 1 | - | 3 | 2 | 1 | | | | | | | CO5 | 1 | 3 | 1 | 2 | 1 | 3 | 2 | 2 | - | 1 | 3 | 2 | 3 | 2 | 1 | OCS101 # INTRODUCTION TO C PROGRAMMING L T P C # **OBJECTIVES** - ❖ To understand the basic concepts in C Programming Language. - To understand Input and Output Statements. - To enhance analyzing and problem solving skills and use the same for writing programs in C. - ❖ To familiarize the basic syntax in arrays and pointers - To provide exposure to problem-solving through programming # UNIT I INTRODUCTORY CONCEPTS & C FUNDAMENTALS 9 **CO1** Introduction to Computers - Computer Characteristics - Modes of Operation - Types of Programming Languages - Introduction to C - Some Simple C Programs - Desirable Program Characteristics - The C Character Set - Identifiers and Keywords - Data Types - Constants - Variables and Arrays - Declarations - Expressions - Statements - Symbolic Constants. # UNIT II OPERATORS, EXPRESSIONS, DATA INPUT & OUTPUT AND CONTROL 9 STATEMENTS Arithmetic Operators - Unary Operators - Relational and Logical Operators - Assignment Operators - The Conditional Operator - Library Functions - getchar, putchar, scanf, printf, gets and puts Functions - Preliminaries - Branching: The if else Statement - Looping: The while Statement - do while Statement - for Statement - Nested Control Structures - The switch Statement - The break Statement - The continue Statement - The Comma Operator - The goto Statement CO₂ # UNIT III FUNCTIONS & PROGRAM STRUCTURE 9 CO3 Defining a Function - Accessing a Function - Function Prototypes - Passing Arguments to a Function - Recursion - Storage Classes - Automatic Variables - External (Global) Variables - Static Variables - Multifile Programs - More About Library Functions # UNIT IV ARRAYS & POINTERS 9 CO4 Defining an Array - Processing an Array - Passing Arrays to Functions - Multidimensional Arrays - Arrays and Strings - Fundamentals - Pointer Declarations - Passing Pointers to Functions - Pointers and One-Dimensional Arrays - Dynamic Memory Allocation - Operations on Pointers - Pointers and Multidimensional Arrays - Arrays of Pointers - Passing Functions to Other Functions # UNIT V STRUCTURES, UNIONS & DATA FILES CO5 Defining a Structure - Processing a Structure - User-Defined Data Types (typedef) - Structures and Pointers - Passing Structures to Functions - Self-Referential Structures - Unions - Opening and Closing a Data File - Creating a Data File - Processing a Data File - Unformatted Data Files **TOTAL: 45 PERIODS** # **TEXT BOOKS** 1. Byron Gottfried - Schaum's Outline of Programming with C, 2nd Edition, McGraw-Hill, 1996. # **REFERENCE BOOKS** - 1. The C Programming Language by Brian Kernighan and Dennis Ritchie 2nd Edition. - 2. Let Us C Yashavant kanetkar, BPB # **COURSE OUTCOMES** Upon completion of the course, the students will be able to - **CO1** Identify situations where computational methods and computers would be useful. - CO2 Demonstrate the use of operators, input and output statements and control statements - CO3 Identify solution to a problem and apply control structures and user defined functions for solving the problem - **CO4** Demonstrate the use of numeric arrays and pointers - CO5 Demonstrate the ability to design creative solutions to real life problems faced by the industry. | | | | | | MA | APPING | OF C | Os WI | TH PO | s AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|--------|-------|-------|-------|---------|------|------|------|--------|-------------------| | COs | | | | | PROG | RAM C | OUTCO | MES (| POs) | | | | | RAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | | | | | | | | CO2 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | | | | | | | | CO3 | 3 | 3 | 3 | 2 | 2 | 2 | | - | | 2 | 2 | 2 | 1 | 2 | 1 | | CO4 | 3 | 3 | 3 | 2 | 2 | 2 | - | - | - | 2 | 2 | 2 | 1 | 2 | 1 | | CO5 | 3 | 3 | 3 | 2 | 2 | 2 | - | - | - | 2 | 2 | 2 | - | - | 1 | OMB102 # LOGISTICS AND SUPPLY CHAIN MANAGEMENT L T P C 3 0 0 3 # **OBJECTIVES:** • To provide an insight on the fundamentals of supply chain networks, tools and techniques. # UNIT I: INTRODUCTION 9 Role of Logistics and Supply chain Management: Scope and Importance- Evolution of Supply Chain - Decision Phases in Supply Chain - Supply chain and competitive Strategies – Drivers of Supply Chain Performance and Obstacles. 9 CO1 # UNIT II: SOURCING AND NETWORK DESIGN _ _ Role of sourcing supply chain - Outsourcing – Make Vs buy -Sourcing strategy - Supplier Selection and Contract Negotiation. Building strategic partnerships and trust within a supply chain -Role of Distribution in Supply Chain – Factors influencing Distribution network design – Design options for Distribution Network Distribution Network in Practice-Role of network Design in Supply Chain – Framework for network Decisions. CO2 # UNIT III: LOGISTICS IN SUPPLY CHAIN 9 Introduction to logistics – Role of logistics in Competitive strategy– Value added logistics services – Roleof transportation in supply chain – factors affecting transportations decision – Design option for transportation network – Tailored transportation – Routing and scheduling in transportation CO₃ # UNIT IV: TRANSPORTATION AND PACKAGING 9 Transportation System – Evolution, Infrastructure and Networks. Freight Management–Containerization; Modal Characteristics - Inter-modal Operators and Transport Economies; International Logistics-objectives, importance in global economy, Characteristics of global supply chains; Packaging - Design considerations – Logistics outsourcing CO4 #
UNIT V: IT IN SUPPLY CHAIN The role IT in supply chain- Supply Chain Integration – Agile Supply chain – Green Supply chain – Reverse Supply chain – E-logistics –future of IT in supply chain – E-Business in supply chain – CO5 Supply chain analytics - Blockchain **TOTAL PERIODS: 45** # **TEXT BOOKS:** 1. Sunil Chopra, Peter Meindl and Kalra, "Supply Chain Management, Strategy, Planning, and Operation", Pearson Education, 2010. # **REFERENCES:** - 1. Jeremy F.Shapiro, "Modeling the Supply Chain", Thomson Duxbury, 2002. - 2. Srinivasan G.S, "Quantitative models in Operations and Supply Chain Management, PHI, 2010 - 3. David J.Bloomberg, Stephen Lemay and Joe B.Hanna, "Logistics", PHI 2002. - 4. James B.Ayers, "Handbook of Supply Chain Management", St.Lucle press, 2000. # **COURSE OUTCOMES** Upon completion of the course, the students will be able - To understand the basics of Supply chain, the strategic role of SCM and the drivers of supply chain performance. - To understand the different distribution networks in Supply chain, the factors influencing design of these networks and to develop a framework of network for distribution. - To understand about the logistic part of supply chain management and the methods to identify the optimized route for transportation. - CO4 To understand about sourcing, selection of suppliers and supply chain coordination - **CO5** To understand the role of IT in Supply chain management. | | | | | | MAF | PPING | OF C | Os WI | TH PC | s AND | PSOs | | | | | |-----|-----|-----|-----|-----|------|-------|------|-------|-------|-------|------|------|------|--------------------------|------| | COs | | | | Р | ROGF | RAM C | UTCC | OMES | (POs) | | | | | PROGR
SPECII
COMES | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 3 | 3 | 2 | 1 | 3 | 3 | 1 | 2 | 1 | 1 | 1 | 3 | - | - | 2 | | CO2 | 3 | 3 | 1 | 2 | 3 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | - | - | 2 | | CO3 | 3 | 3 | 2 | 1 | 3 | 2 | 3 | 3 | 1 | 1 | 2 | 3 | - | - | 2 | | CO4 | 2 | 1 | 2 | 3 | 3 | 1 | 3 | 3 | 3 | 1 | 2 | 1 | - | - | 2 | | CO5 | 2 | 3 | 3 | 2 | 2 | 3 | 1 | 2 | 3 | 1 | 3 | 3 | - | - | 2 | # **AUDIT COURSES** # AD1001 CONSTITUTION OF INDIA L T P C 2 0 0 0 0 OBJECTIVES: - Teach history and philosophy of Indian Constitution. - Describe the premises informing the twin themes of liberty and freedom from a civil rights perspective. - Summarize powers and functions of Indian government. - Explain emergency rule. - Explain structure and functions of local administration. | • | Explain structure and functions of local aurilinistration. | | |----------|---|-----| | UNIT I: | INTRODUCTION | 9 | | • | of Making of the Indian Constitution-Drafting Committee- (Composition & Working) - phy of the Indian Constitution-Preamble-Salient Features | CO1 | | UNIT II | CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES | 9 | | Freedo | nental Rights-Right to Equality-Right to Freedom-Right against Exploitation Right to m of Religion-Cultural and Educational Rights-Right to Constitutional Remedies Directive es of State Policy-Fundamental Duties | CO2 | | UNIT III | : ORGANS OF GOVERNANCE | 9 | | Preside | ent-Composition-Qualifications and Disqualifications-Powers and Functions-Executive ent-Governor-Council of Ministers-Judiciary, Appointment and Transfer of Judges, ations Powers and Functions | CO3 | UNIT IV: EMERGENCY PROVISIONS 9 Emergency Provisions - National Emergency, President Rule, Financial Emergency CO4 UNIT V: LOCAL ADMINISTRATION 9 District's Administration head- Role and Importance-Municipalities- Introduction- Mayor and role of Elected Representative-CEO of Municipal Corporation-Pachayati raj- Introduction- PRI- Zila Pachayat-Elected officials and their roles- CEO ZilaPachayat- Position and role-Block levelOrganizational Hierarchy (Different departments)-Village level- Role of Elected and Appointed officials-Importance of grass root democracy **TOTAL PERIODS: 45** # **TEXT BOOKS:** - 1. Basu D D, Introduction to the Constitution of India, Lexis Nexis, 2015. - 2. Busi S N, Ambedkar B R framing of Indian Constitution, 1st Edition, 2015. - 3. Jain M P, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014. - 4. The Constitution of India (Bare Act), Government Publication, 1950 Upon completion of the course, the students will be **CO1** Able to understand history and philosophy of Indian Constitution. Able to understand the premises informing the twin themes of liberty and freedom from a civil rights perspective. **CO3** Able to understand powers and functions of Indian government. **CO4** Able to understand emergency rule. **CO5** Able to understand structure and functions of local administration. | | | | | | M | APPIN | G OF C | COs WI | тн Ро | s AND F | PSOs | | | | | |-----|-----|-----|-----|-----|------|-------|--------|--------|-------|---------|-------------|------|------|--------|-------------------| | COs | | | | | PROG | RA M | оитсо | OMES (| POs) | | | | | RAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | - | - | - | - | - | - | - | 1 | - | - | 1 | - | - | - | | CO2 | - | - | - | - | - | - | - | - | 1 | - | - | 1 | - | - | - | | CO3 | - | - | - | - | - | - | - | - | 1 | - | - | 1 | - | - | - | | CO4 | - | - | - | - | - | - | - | - | 1 | - | - | 1 | - | - | - | | CO5 | - | - | - | - | - | - | - | - | 1 | - | - | 1 | - | - | - | AD1002 VALUE EDUCATION L T P C 2 0 0 0 # **OBJECTIVES:** - Develop knowledge of self-development - Explain the importance of Human values - Develop the overall personality through value education - Overcome the self destructive habits with value education - Interpret social empowerment with value education # UNIT I: INTRODUCTION TO VALUE EDUCATION 9 Values and self-development –Social values and individual attitudes, Work ethics, Indian vision of humanism, Moral and non- moral valuation, Standards and principles, Value judgments **CO1** # UNIT II: IMPORTANCE OF VALUES 9 Importance of cultivation of values, Sense of duty, Devotion, Self-reliance, Confidence, Concentration, Truthfulness, Cleanliness. Honesty, Humanity, Power of faith, National Unity, Patriotism, Love for nature, Discipline CO₂ # UNIT III: INFLUENCE OF VALUE EDUCATION 9 Personality and Behaviour development - Soul and Scientific attitude. Positive Thinking, Integrityand discipline, Punctuality, Love and Kindness, Avoid fault Thinking, Free from anger, Dignity of labour, Universal brotherhood and religious tolerance, True friendship Happiness Vs suffering, love for truth. CO₃ # UNIT IV: REINCARNATION THROUGH VALUE EDUCATION 9 Aware of self-destructive habits, Association and Cooperation, Doing best for saving natureCharacter and Competence –Holy books vs Blind faith, Self-management and Good health, Science of reincarnation CO4 # UNIT V: VALUE EDUCATION IN SOCIAL EMPOWERMENT 9 Equality, Non violence, Humility, Role of Women, All religions and same message, Mind your Mind, Self-control, Honesty, Studying effectively CO₅ **TOTAL PERIODS: 45** # **REFERENCE:** Chakroborty , S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press ,New Delhi # **COURSE OUTCOMES** Upon completion of the course, the students will be - **CO1** Gain knowledge of self-development - **CO2** Learn the importance of Human values - **CO3** Develop the overall personality through value education - **CO4** Overcome the self destructive habits with value education - **CO5** Interpret social empowerment with value education | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|-----|-------|-------|------|--------|------|------|------|------|------|--------|-------------------| | COs | | | | I | PROGI | RAM O | UTCO | MES (I | POs) | | | | | GRAM S | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | 1 | - | - | - | - | - | 1 | 1 | 1 | - | - | 1 | - | - | - | | CO2 | - | - | - | - | - | - | 1 | 1 | 1 | - | - | 1 | - | - | - | | CO3 | - | - | - | - | - | - | 1 | 1 | 1 | - | - | 1 | - | - | - | | CO4 | - | - | - | - | - | - | 1 | 1 | - | - | - | 1 | - | - | - | | CO5 | - | - | - | - | - | - | 1 | 1 | - | - | - | 1 | - | - | - | # AD1003 **PEDAGOGY STUDIES OBJECTIVES:** Understand the methodology of pedagogy. Compare pedagogical practices used by teachers in formal and informal classrooms in developing countries. Infer how can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy. Illustrate the factors necessary for professional development. Identify the Research gaps in pedagogy. UNIT I: INTRODUCTION AND METHODOLOGY Aims and rationale, Policy background, Conceptual framework and terminology - Theories oflearning, Curriculum, Teacher education - Conceptual framework, Research questions -Overviewof methodology and Searching. #### UNIT II: THEMATIC OVERVIEW 9 CO1 9 Pedagogical practices are being used by teachers in formal and informal classrooms in developingcountries - Curriculum, Teacher education. CO₂ #### UNIT III: EVIDENCE ON THE EFFECTIVENESS OF PEDAGOGICAL PRACTICES Methodology for the in depth stage: quality assessment of included studies - How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? - Theory of change - Strength and nature of the body of evidence for effective pedagogical practices - Pedagogic theory and pedagogical approaches - Teachers' attitudes and beliefs and Pedagogic strategies. CO₃ #### **UNIT IV:** PROFESSIONAL DEVELOPMENT 9 Professional development: alignment with
classroom practices and follow up support -Peersupport - Support from the head teacher and the community - Curriculum and assessment -Barriers to learning: limited resources and large class sizes **CO4** #### UNIT V: RESEARCH GAPS AND FUTURE DIRECTIONS Research design - Contexts - Pedagogy - Teacher education - Curriculum and assessment -CO₅ Dissemination and research impact. **TOTAL PERIODS: 45** # REFERENCES: - 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261. - 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379. - 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID. - 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 - 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell. Upon completion of the course, the students will be able to - CO1 Understand the methodology of pedagogy - CO2 Understand Pedagogical practices used by teachers in formal and informal classrooms in developing countries. - Find how can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy. - **CO4** Know the factors necessary for professional development. - **CO5** Identify the Research gaps in pedagogy. | | | | | | M | APPIN | G OF C | Os WI | тн ро | s AND F | PSOs | | | | | |-----|-----|-----|-----|-----|------|-------|--------|-------|-------|---------|------|------|------|--------|-------------------| | COs | | | | | PROG | RAM (| OUTCO | MES (| POs) | | | | | RAM SI | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | | CO2 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | | CO3 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | | CO4 | - | - | - | - | 1 | - | 1 | 1 | - | - | - | 1 | - | - | - | | CO5 | - | - | • | - | - | - | - | - | - | - | - | 1 | - | - | - | # AD1004 UNIT II: UNIT III: # STRESS MANAGEMENT BY YOGA L T P C 2 0 0 0 # **OBJECTIVES:** - Develop healthy mind in a healthy body thus improving social health also improve efficiency - Invent Do's and Don't's in life through Yam - Categorize Do's and Don't's in life through Niyam - Develop a healthy mind and body through Yog Asans - Invent breathing techniques through Pranayam # UNIT I: INTRODUCTION TO YOGA 9 Definitions of Eight parts of yog.(Ashtanga) YAM NIYAM CO1 Do`s and Don't's in life.Shaucha, santosh, tapa, swadhyay, ishwarpranidhan CO2 9 Do's and Don't's in life. Ahinsa, satya, astheya, bramhacharya and aparigraha CO₃ UNIT IV: ASAN 9 Various yog poses and their benefits for mind & body CO4 UNIT V: PRANAYAM 9 Regularization of breathing techniques and its effects-Types of pranayam CO5 **TOTAL PERIODS: 45** # **REFERENCES:** - 1. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata - 2. 'Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur # **COURSE OUTCOMES** Upon completion of the course, the students will be able to - CO1 Develop healthy mind in a healthy body thus improving social health also improve efficiency - CO2 Learn Do's and Don't's in life through Yam - CO3 Learn Do's and Don't's in life through Niyam - **CO4** Develop a healthy mind and body through Yog Asans - **CO5** Learn breathing techniques through Pranayam | | | | | | MA | APPING | G OF C | Os WI | TH PO | s AND P | SOs | | | | | |-----|-----|-----|-----|-----|------|--------|--------|-------|-------|---------|------|------|------|-------------------|------| | COs | | | | | PROG | RAM | OUTCO | MES (| POs) | | | | | RAM SP
OMES (F | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | - | - | - | - | - | 1 | 1 | - | - | - | 1 | - | - | - | | CO2 | - | - | - | - | - | - | 1 | 1 | - | - | - | 1 | - | - | - | | СОЗ | - | - | - | - | - | - | 1 | 1 | - | - | - | 1 | - | - | - | | CO4 | - | - | - | - | - | - | 1 | 1 | - | - | - | 1 | - | - | - | | CO5 | - | - | - | - | - | - | 1 | 1 | - | - | - | 1 | - | - | - | AD1005 PERSONALITY DEVELOPMENT THROUGH LIFE L T P ENLIGHTENMENT SKILLS 2 0 0 0 C # **OBJECTIVES:** - Develop basic personality skills holistically - Develop deep personality skills holistically to achieve happy goals - Rewrite the responsibilities - · Reframe a person with stable mind | UNIT I: | NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY - I | 9 | |--------------------------|--|----------| | Verses- 19,20,21 | ,22 (wisdom) - Verses- 29,31,32 (pride & heroism) – Verses- 26,28,63,65 (virtue) | CO1 | | UNIT II: | NEETISATAKAM-HOLISTIC DEVELOPMENT OF PERSONALITY - II | 9 | | Verses- 52,53,59 | (dont's) - Verses- 71,73,75,78 (do's) | CO2 | | UNIT III: | ORGANS OF GOVERNANCE | 9 | | • | d Geeta: Chapter 2-Verses 41, 47,48 - Chapter 3-Verses 13, 21, 27, 35 Chapter 6-3, 35 - Chapter 18-Verses 45, 46, 48 | CO3 | | UNIT IV: | EMERGENCY PROVISIONS | 9 | | | sic knowledge - Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68 es 13, 14, 15, 16,17, 18 | CO4 | | UNIT V: | LOCAL ADMINISTRATION | 9 | | Chapter2-Verses 37,38,63 | 17, Chapter 3-Verses 36,37,42 - Chapter 4-Verses 18, 38,39 Chapter 18 - Verses | CO5 | | , , | TOTAL PER | RIODS:45 | # **REFERENCES:** - 1. Gopinath, Rashtriya Sanskrit Sansthanam P, Bhartrihari's ThreeSatakam , Nitisringarvairagya, Delhi, 2010 - 2. Swami Swarupananda, Srimad Bhagavad Gita, Advaita Ashram, Publication Department, Kolkata, 2016. # **COURSE OUTCOMES** Upon completion of the course, the students will be - **CO1** To develop basic personality skills holistically - CO2 To develop deep personality skills holistically to achieve happy goals - CO3 To rewrite the responsibilities - CO4 To reframe a person with stable mind, pleasing personality and determination - **CO5** To awaken wisdom in students | | | | | | M | APPIN | G OF C | COs W | TH PC | s AND | PSOs | | | | | |-----|-----|-----|-----|-----|------|-------|--------|-------|-------|-------|------|------|------|------|-------------------| | COs | | | | | PROG | RAM | OUTCC | MES (| POs) | | | | | | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | - | | 1 | ı | - | 1 | ı | 1 | - | | 1 | - | - | - | | CO2 | 1 | ı | ı | ı | ı | ı | ı | ı | 1 | - | ı | 1 | 1 | - | - | | CO3 | - | 1 | ı | ı | ı | 1 | ı | ı | 1 | - | ı | 1 | ı | - | - | | CO4 | - | - | - | - | - | - | - | ı | 1 | - | - | 1 | - | - | - | | CO5 | - | - | - | - | - | - | - | - | 1 | - | - | 1 | - | - | - | # AD1006 # **UNNAT BHARAT ABHIYAN** L T P C 2 0 0 0 # **Objectives** - To engage the students in understanding rural realities - To identify and select existing innovative technologies, enable customization of technologies, or devise implementation method for innovative solutions, as per the local needs. - To leverage the knowledge base of the institutions to devise processes for effective implementation of various government programmes - To understand causes for rural distress and poverty and explore solutions for the same - To apply classroom knowledge of courses to field realities and thereby improve quality of learning # UNIT - I QUALITY OF RURAL LIFE IN VILLAGES AND UNNAT BHARAT ABHIYAN 9 Introduction to Unnat Bharat Abhiyan - concept, scope and objectives, rural life, rural society, cast and gender relations, rural values with respect to community, nature and resources, elaboration of "Soul of India lies in villages" – (Gandhi Ji), Rural infrastructure, problems in rural area. CO1 **Assignment:** Prepare a map (Physical, visual and digital) of the village you visited and write an essay about inter-family relation in that village. # UNIT - II RURAL ECONOMY AND LIVELIHOOD 9 Agriculture, farming, land ownership pattern, water management, animal husbandry, non-farm livelihoods and artisans, rural entrepreneurs, rural market. CO₂ **Assignment:** Describe your analysis of rural household economy, it's challenges and possible pathways to address them. Group discussion in class- (4) Field visit 3. # UNIT - III RURAL INSTITUTIONS 9 History of Rural Development, Traditional rural organizations, Self Help Groups, Gram Swaraj and 3-Tier Panchayat Raj Institutions (Gram Sabha, Gram Panchayat, Standing Committee), local civil society, local administration. Introduction to Constitution, Constitutional Amendments in Panchayati Raj – Fundamental Rights and Directive Principles. CO3 **Assignment:** Panchayati Raj institutions in villages? What would you suggest to improve their effectiveness? Present a case study (written or audio-visual). Field Visit – 4. # UNIT - IV RURAL DEVELOPMENT PROGRAMMES 9 National programmes - Sarva Shiksha Abhiyan, Beti Bachao, Beti Padhao, Ayushman Bharat, Swatchh Bharat, PM Awass Yojana, Skill India, Gram Panchayat Decentralised Planning, NRLM, MNREGA, etc. **Written Assignment:** Describe the benefits received and challenges faced in the delivery of one of these programmes in the rural community, give suggestions about improving implementation of the programme for the rural poor. CO₄ # UNIT - V FIELD WORK 9 # Each student selects one programme for field visit Field based practical activities: - Interaction with SHG women members, and study of their functions and challenges; planning for their skill building and livelihood activities - Visit MGNREGS project sites, interact with beneficiaries and interview
functionaries at the work site - Field visit to Swachh Bharat project sites, conduct analysis and initiate problem solving measures - Conduct Mission Antyodaya surveys to support under Gram Panchayat Development Plan(GPDP) - Interactive community exercise with local leaders, panchayat functionaries, grass-root officials and local institutions regarding village development plan preparation and resource mobilization - Visit Rural Schools I mid-day meal centres, study Academic and infrastructural resources and gaps - Participate in Gram Sabha meetings, and study community participation - Associate with Social audit exercises at the Gram Panchayat level, and interact with programme beneficiaries CO₅ - Attend Parent Teacher Association meetings, and interview school drop outs - Visit local Anganwadi Centre and observe the services being provided - Visit local NGOs, civil society organisations and interact with their staff and beneficiaries. - Organize awareness programmes, health camps, Disability camps and cleanliness camps o Conduct soil health test, drinking water analysis, energy use and fuel efficiency surveys - Raise understanding of people's impacts of climate change, building up community's disaster preparedness - Organise orientation programmes for farmers regarding organic cultivation, rational use of irrigation and fertilizers and promotion of traditional species of crops and plants - Formation of committees for common property resource management, village pond maintenance and fishing. Total Periods: 45 # **Text Books:** - 1. Singh, Katar, Rural Development Principles, Policies and Management, Sage Publications, New Delhi, 2015 - 2. A Hand book on Village Panchayat Administration, Rajiv Gandhi Chair for Panchayati Raj Studies, 2002 - 3. United Nations, Sustainable Development Goals, 2015 un.org/sdgs # **Reference Books:** - 1. M.P.Boraian, Best Practices in Rural Development, Shanlax Publishers - 2. Unnat Bharat Abhiyan Website: www.unnatbharatabhiyan.gov.in Upon completion of the course, the students will be able to CO1 Understand of rural life, culture and social realities CO2 Understand the concept of measurement by comparison or balance of parameters. CO3 Develop a sense of empathy and bonds of mutuality with local community Appreciate significant contributions of local communities to Indian society and economy Value the local knowledge and wisdom of the community CO6 Understand of rural life, culture and social realities | | | | | | M | APPIN | G OF C | Os W | TH PC | s AND I | PSOs | | | | | |-----|-----|-----|-----|-----|------|-------|--------|-------|-------|---------|------|------|------|------|--------------------| | COs | | | | | PROG | RAM | OUTCO | MES (| POs) | | | | | | SPECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | - | - | - | - | - | - | - | 1 | - | - | 1 | - | - | - | | CO2 | - | - | - | - | - | - | - | - | 1 | - | - | 1 | - | - | - | | СОЗ | - | - | - | - | - | 1 | - | 1 | 1 | - | - | 1 | - | - | - | | CO4 | - | - | - | - | - | - | - | - | 1 | - | - | 1 | - | - | - | | CO5 | - | - | - | - | - | - | - | - | 1 | - | - | 1 | - | - | - | # AD1007 ESSENCE OF INDIAN KNOWLEDGE TRADITION L T P C 2 0 0 0 # **OBJECTIVES:** The course will introduce the students to - Get a knowledge about Indian Culture - Know Indian Languages and Literature religion and philosophy and the fine arts in India - Explore the Science and Scientists of Ancient, Medieval and Modern India - Understand education systems in India # UNIT I: INTRODUCTION TO CULTURE 9 Culture, civilization, culture and heritage, general characteristics of culture, importance of culture in human literature, Indian Culture, Ancient India, Medieval India, Modern India **CO1** # UNIT II: INDIAN LANGUAGES AND LITERATURE , Indian Languages and Literature – I: Languages and Literature of South India, – Indian Languagesand Literature – II: Northern Indian Languages & Literature # UNIT III: RELIGION AND PHILOSOPHY 9 Major religions practiced in India and Understanding their Philosophy – religious movements in Modern India (Selected movements only) CO3 #### UNIT IV: FINE ARTS IN INDIA (ART, TECHNOLOGY& ENGINEERING) Indian Painting, Indian handicrafts, Music, divisions of Indian classic music, modern Indian music, Dance and Drama, Indian Architecture (ancient, medieval and modern), Science and Technology in India, development of science in ancient, medieval and modern India **CO4** #### UNIT V: **EDUCATION SYSTEM IN INDIA** 9 Education in ancient, medieval and modern India, aims of education, subjects, languages, Scienceand Scientists of Ancient India, Science and Scientists of Medieval India, Scientists of Modern India CO₅ **TOTAL PERIODS: 45** # **REFERENCES:** - 1. Kapil Kapoor, "Text and Interpretation: The India Tradition", ISBN: 81246033375, 2005 - 2. "Science in Samskrit", Samskrita Bharti Publisher, ISBN 13: 978-8187276333, 2007 - 3. NCERT, "Position paper on Arts, Music, Dance and Theatre", ISBN 81-7450494-X, 200 - 4. Narain, "Examinations in ancient India", Arya Book Depot, 1993 - 5. Satva Prakash. "Founders of Sciences in Ancient India". Viiav Kumar Publisher. 1989 - 6. M. Hiriyanna, "Essentials of Indian Philosophy", Motilal Banarsidass Publishers, ISBN 13: 978-8120810990, 2014 # **COURSE OUTCOMES** Upon completion of the course, the students will be able to | CO1 | Understand | philosophy | √ of India | n culture. | |-----|------------|------------|------------|------------| | | | | | | CO₂ Distinguish the Indian languages and literature. CO₃ Learn the philosophy of ancient, medieval and modern India. CO₄ Acquire the information about the fine arts in India. Know the contribution of scientists of different eras. CO₅ CO6 Understand education systems in India | | | | | | M | APPIN | G OF C | COs W | TH PC | s AND I | PSOs | | | | | |-----|-----|-----|-----|-----|------|-------|--------|-------|-------|---------|------|------|------|------|-------------------| | COs | | | | | PROG | RAM | OUTCC | MES (| POs) | | | | | | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | - | - | ı | ı | ı | - | - | 1 | 1 | - | 1 | - | - | - | | CO2 | - | - | - | 1 | - | - | - | - | 1 | 1 | - | 1 | - | - | - | | СОЗ | - | - | - | - | - | - | - | - | 1 | 1 | - | 1 | - | - | - | | CO4 | - | 1 | - | 1 | 1 | 1 | - | - | 1 | 1 | - | 1 | - | - | - | | CO5 | - | - | - | - | - | - | - | - | 1 | 1 | - | 1 | - | - | - | | CO6 | - | - | - | ī | - | - | - | - | 1 | 1 | | 1 | - | - | - | # AD1008 SANGA TAMIL LITERATURE APPRECIATION L T P C 2 0 0 0 # **OBJECTIVES:** The main learning objective of this course is to make the students an appreciation for: - 1. Introduction to Sanga Tamil Literature. - 2. 'Agathinai' and 'Purathinai' in Sanga Tamil Literature. - 3. 'Attruppadai' in SangaTamil Literature. - 4. 'Puranaanuru' in SangaTamil Literature. - 5. 'Pathitrupaththu' in SangaTamil Literature. # UNIT I: SANGA TAMIL LITERATURE – AN INTRODUCTION CO1 Introduction to Tamil Sangam–History of Tamil Three Sangams–Introduction to Tamil SangamLiterature–Special Branches in Tamil Sangam Literature- Tamil Sangam Literature's GrammarTamil Sangam Literature's parables. # UNIT II: 'AGATHINAI'AND'PURATHINAI' CO2 Tholkappiyar's Meaningful Verses—Three literature materials—Agathinai's message- History of Culture from Agathinai—Purathinai—Classification—Mesaage to Society from Purathinai. # UNIT III: 'ATTRUPPADAI'. CO3 AttruppadaiLiterature—Attruppadaiin'Puranaanuru'-Attruppadaiin'Pathitrupaththu'-Attruppadaiin 'Paththupaattu'. # UNIT IV: 'PURANAANURU' CO4 Puranaanuru on Good Administration, Ruler and Subjects-Emotion & its Effect in Puranaanuru. # UNIT V: 'PATHITRUPATHTHU' CO5 Pathitrupaththuin'Ettuthogai'-Pathitrupaththu'sParables- Tamildynasty:Valor,Administration,Charity in Pathitrupaththu- Mesaage to Society from Pathitrupaththu. **TOTAL PERIODS: 45** # **REFERENCES:** - 1. Sivaraja Pillai, The Chronology ofthe Early Tamils, Sagwan Press, 2018. - 2. HankHeifetz andGeorgeL. Hart, The Purananuru, Penguin Books, 2002. - 3. Kamil Zvelebil, The Smile of Murugan: OnTamil Literature of South India, Brill Academic Pub, 1997. - 4. GeorgeL. Hart, Poetsof the Tamil Anthologies: Ancient Poems of Love and War, Princeton University Press, 2015. - 5. XavierS. Thani Nayagam, Landscape and poetry: a study of nature in classical Tamil poetry, Asia Pub. House, 1967. Upon completion of the course, the students will be able to **CO1** Appreciate and apply the messages in Sanga Tamil Literature in their life. CO2 Differentiate 'Agathinai' and 'Purathinai'in their personal and societal life. CO3 Appreciate and apply the messages in Attruppadai' in their personal and societal life. CO4 Appreciate and apply the messages in Puranaanuru' in their personal and societal life. **CO5** Appreciate and apply the messages in Pathitrupaththu' in their personal and societal life. | | MAPPING OF COs WITH POs AND PSOs | | | | | | | | | | | | | | | |-----|----------------------------------|-----|-----|-----|------|-----|-------|-------|-------|------|------|------|------|------|-------------------| | COs | | | | | PROG | RAM | OUTCC | MES (| (POs) | | | | | | PECIFIC
(PSOs) | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | | CO1 | - | - | | - | 1 | - | - | 1 | 1 | 1 | - | 1 | - | - | - | | CO2 | - | 1 | ı | - | ı | ı | ı | ı | ı | ı | ı | 1 | - | - | - | | CO3 | - | - | ı | - | ı | 1 | 1 | 1 | 1 | 1 | ı | 1 | - | - | - | | CO4 | - | - | ı | - | ı | ı | 1 | 1 | 1 | 1 | - | 1 | - | - | - | | CO5 | - | - | - | - | - | - | - | - | 1 | 1 | - | 1 | - | - | - |